BibTex Citation Data :
@article{Reaktor1542, author = {Heru Susanto and Luqman Buchori and Siswo Sumardiono and Berkah Fajar and Titik Istirokhatun and I Widiasa}, title = {ULTRAFILTRATION AS PRETREATMENT OF REVERSE OSMOSIS: LOW FOULING ULTRAFILTRATION MEMBRANE PREPARED FROM POLYETHERSULFONE–AMPHIPHILIC BLOCK COPOLYMER BLEND}, journal = {Reaktor}, volume = {12}, number = {4}, year = {2009}, keywords = {membrane preparation, Pluronic®, polyethersulfone, poly(ethylene glycol)-b-poly(propylene glycol)-b- poly(ethylene glycol), ultrafiltration membrane}, abstract = { This paper demonstrates the preparation of polyethersulfone (PES) ultrafiltration (UF) membranes via wet phase inversion method using either poly(ethylene oxide)-b-poly(propylene oxide)-b- poly(ethylene oxide) (Pluronic ® , Plu) or polyethylene glycol (PEG) as hydrophilic modifier. Their effects on membrane structure as well as the resulting membrane performance and their stability in membrane polymer matrix were systematically investigated. The investigated membrane characteristics include surface hydrophilicity (by contact angle), surface chemistry (by FTIR spectroscopy) and water flux measurement . Visualization of membrane surface and cross section morphology was also done by scanning electron microscopy. The membrane performance was examined by investigation of adsorptive fouling and ultrafiltration using solution of bovine serum albumin as the model system. The stability of additive was examined by incubating the membrane in water (40 o C) for up to 10 days. The results show that modification effects on membrane characteristic and low fouling behavior were clearly observed. Further, amphiphilic Pluronic generally showed better performance than PEG. }, issn = {2407-5973}, pages = {203--210} doi = {10.14710/reaktor.12.4.203 – 210}, url = {https://ejournal.undip.ac.id/index.php/reaktor/article/view/1542} }
Refworks Citation Data :
This paper demonstrates the preparation of polyethersulfone (PES) ultrafiltration (UF) membranes via wet phase inversion method using either poly(ethylene oxide)-b-poly(propylene oxide)-b- poly(ethylene oxide) (Pluronic®, Plu) or polyethylene glycol (PEG) as hydrophilic modifier. Their effects on membrane structure as well as the resulting membrane performance and their stability in membrane polymer matrix were systematically investigated. The investigated membrane characteristics include surface hydrophilicity (by contact angle), surface chemistry (by FTIR spectroscopy) and water flux measurement. Visualization of membrane surface and cross section morphology was also done by scanning electron microscopy. The membrane performance was examined by investigation of adsorptive fouling and ultrafiltration using solution of bovine serum albumin as the model system. The stability of additive was examined by incubating the membrane in water (40oC) for up to 10 days. The results show that modification effects on membrane characteristic and low fouling behavior were clearly observed. Further, amphiphilic Pluronic generally showed better performance than PEG.
Article Metrics:
Last update:
Last update: 2025-02-05 13:04:00
In order for REAKTOR to publish and disseminate research articles, we need non-exclusive publishing rights (transferred from the author(s) to the publisher). This is determined by a publishing agreement between the Author(s) and REAKTOR. This agreement deals with transferring or licensing the publishing copyright to REAKTOR while Authors still retain significant rights to use and share their published articles. REAKTOR supports the need for authors to share, disseminate, and maximize the impact of their research and these rights in any databases.
As a journal author, you have the right to use your article for many purposes, including by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose, even commercially. Still, they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g., display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
JURNAL REAKTOR (p-ISSN: 0852-0798; e-ISSN: 2407-5973)
Published by Departement of Chemical Engineering, Diponegoro University