*Suherman Suherman  -  Jurusan Teknik Kimia, Fakultas Teknik Universitas Diponegoro, Indonesia
Rona Trisnaningtyas  -  Jurusan Teknik Kimia, Fakultas Teknik Universitas Diponegoro
Received: 9 Apr 2015; Published: 15 May 2016.
Open Access

Citation Format:

Energy and exergy analysis of cassava starch drying in continuous vibrated fluidized bed dryer were carried out to assess the performance of the system in terms of energy utilization ratio, energy efficiency, exergy inflow and outflow, exergy loss, and exergetic efficiency. The results showed cassava starch has starch content 87%, degree of whiteness 95%, negative fiber content, sperichal granula with average diameter12.32 μm, orthorhombic crystal structure and crystal size 47.467 nm . Energy utilization and energy utilization ratio increased from 0.08 to 0.20 J/s and 0.35 to 0.4 as the drying temperature  increased from 50 to 70 oC. Energy efficiency increased from 13.80 % to 23.31 %, while exergy inflow, outflow, and losses increased from 4.701 to 14.678, 2.277 to 6.344, and 2.424 to 8.334 J/s respectively in the above temperature range. Exergetic efficiency decreased with increase in drying air temperature, while exergetic improvement potential increased with increased drying air temperature.

Keywords: Cassava starch, continuous drying, energy and exergy analysis, vibrated fluidized bed


Analisis energi dan eksergi pengeringan pati tapioka menggunakan pengering kontinu unggun fluidisasi getar, telah dilakukan untuk menilai kinerja sistem dalam bentuk utilisasi energi, efisiensi energi, eksergi masuk dan keluar, eksergi hilang dan efisiensi eksergi. Hasil analisis pati memiliki kandungan starch 87%, tingkat keputihan 95%, kandungan serat negatif, bentuk partikel granular spherical dengan diameter 12,32 μm, struktur kristal orthorhombic dan ukuran kristal sebesar 47,467 nm. Peningkatan suhu pengering dari 50 menjadi 70 0C akan meningkatkan utilisasi energi dan rasio utilisasi energi dari 0,08 menjadi 0,20 J/s dan 0,35 menjadi 0,4. Efisiensi energi meningkat dari 13,80% hingga 23,31%, sedangkan eksergi masuk dan keluar, eksergi hilang meningkat dari 4,701 menjadi 14,678, 2,277 menjadi 6,344, dan 2,424 menjadi 8,334 J/s. Efisiensi eksergi menurun dengan naiknya suhu sedangkan potensi pengembangan eksergi meningkat dengan naiknya suhu.

Kata kunci:. Analisis energi dan eksergi, pati tapioka, pengeringan kontinu, unggun fluidisasi getar

Keywords: Analisa energi dan eksergi, pati tapioka, pengeringan kontinyu, unggun fluidisasi getar
Funding: Kemendikbud

Article Metrics:

  1. Aghbashlo M., MH Kianmehr, A Arabhosseini, (2009), Performance analysis of drying carrot slice in a semi-industrial continuous band dryer, Food Eng., 91. 99-108
  2. Aghbashlo M., MH Kianmehr, HS Akhijahani H., (2008), Influence of drying conditions on the effective moisture diffusivity, energy of activation, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae), Energy Convers. Manage., 49(10). 2865-71
  3. Akbulut, A., A. Durmus, (2010), Energy and exergy analysis of thin layer drying of mulberry in a forced solar dryer, Energy, 35. 1754-1763
  4. Akpinar EK., (2005), Energy and exergy analyses of drying of eggplant slices in a cyclone type dryer, J. Mech. Sci. Tech., 19(2). 692-703
  5. Akpinar EK., Midilli A., Bicer Y., (2005), Energy and exergy of potato drying process via cyclone type dryer, Energy Convers. Manage., 46. 2530-52
  6. Assari, MR., HB. Tabrizi, E. Najafpour, (2013), Energy and exergy analysis of fluidized bed dryer based on two-fluid modeling, Int. J. Thermal Sci., 64. 213-219
  7. Aviara NA, Igbeka JC, Nwokocha LM. (2010), Effect of drying temperature on physicochemical properties of cassava starch, Int. Agrophysics (24) 219-225
  8. Aviara NA., LN. Onuoha, OE. Falola, JC. Igbeka (2014), Energy and exergy analysis of native cassava starch drying in a tray dryer, Energy, 73. 809-817
  9. Boukadoum, AB, A. Benzaout, (2011), Energy and exergy analysis of solar drying process of mint, Energy Procedia, 6. 583-591
  10. Colak N., A. Hepbasli, (2007), Performance analysis of drying of green olive in a tray dryer, J. Food Eng., 80(4). 1188-93
  11. Corzo, O., N. Bracho, A. Vásquez, A. Pereira, (2008), Energy and exergy analysis of thin layer drying of coroba slices, J. Food Eng., 86. 151-161
  12. Dincer, I., (2011), Exergy as a potential tool for sustainable drying system, Sustain Cities Soc., 1. 91-6
  13. Dincer, I., AZ. Sahin, (2004), A new model for thermodynamics analysis of a drying process, Int. J. Heat Mass Transfer, 47. 645-52
  14. Fudholi, A., K. Sopian, MY. Othman, MH Ruslan, (2014), Energy and exergy analyses of solar drying system of red seaweed, Energy and Buildings 68, 121–129
  15. Hepbasli A., Z. Erbay, N. Colak, EH. Kuzgunkaya, F., Icier, (2010), An exergetic performance assessment of three different food driers, Proceedings of the Institution of Mech. Eng., Part A : J. Power Energy, 224 (1). 1-12
  16. Karaguzel I., E. Tekin, A. Topuz, (2012), Energy and exergy analysis of fluidized bed drying of chickpea and bean, Sci. Res. Essays, 7(46), pp. 3961-3973,
  17. Karimi F., S. Rafiee, (2012), Optimization of an air drying process for Artemisia absinthium leaves using response surface and artificial neural network models, J. Taiwan Ins. Chem. Eng., 43(1). 29-39
  18. Midilli A., H. Kucuk, (2003), Energy and exergy analysis of solar drying process of pistachio, Energy, 28 (6). 539-56
  19. Nazghelichi T., MH. Kianmehr, M. Aghbashlo, (2010), Thermodynamic analysis of fluidized bed drying of carrot cubes, Energy, 35. 4697-4684
  20. Ocal C, (2013), Drying of natural zeolite powders in vibrated fluidized beds, Master Theses, Middle East Technical University
  21. Palzer S., (2007), Drying of wet agglomeration in a continuous fluid bed : Influence of residence time, air temperature and air flowrate on the drying kinetics and the ammount of oversize particles, Chem. Eng. Sci., 62. 463-470
  22. Sarker, M.S.H., MN. Ibrahim, NA Aziz, MS Punan, (2015), Energy and exergy analysis of industrial fluidized bed drying of paddy, Energy, 84, 131-138
  23. Smail M., (2011), Drying kinetics of olive pomace in a fluidized bed dryer, Energy Convers. Manage., 52. 1644-1649
  24. Stakic M., T. Urosevic, (2011), Experimental study and simulation of vibrated fluidized bed drying, Chem. Eng. Process., 50. 428-437
  25. Tonukari, NJ., (2004), Cassava and the future of starch, Electron. J. Biotech., 7 (1). 5-8
  26. Venkantesh, R. Deiva, M. Grmela, J. Chaouki, (1998), Simulations of vibrated fine powders, Powder Technol., 100. 211-222
  27. Yang X, Y. Zhao, Z. Luo, S. Song, C. Duan, L. Dong, (2013), Fine coal dry cleaning using a vibrated gas-fluidized bed, Fuel Process. Technol., 106. 338-343
  28. Zhao P., Y. Zhao, Z. Chen, Z. Luo, (2015), Dry cleaning of fine lignite in vibrated gas-fluidized bed : Segregation characteristics, Fuel, 142. 274-282

Last update: 2021-02-26 09:42:08

  1. Energy and exergy analysis economic of continuous vibrating fluidized bed drying on celery drying

    S U Handayani, I S Atmanto, F T Putri, S Fujiwara. Journal of Physics: Conference Series, 127 , 2020. doi: 10.1088/1742-6596/1524/1/012030
  2. Performance Evaluation of Pneumatic Dryer for Aren (Arenga piñata) Flour

    MATEC Web of Conferences, 127 , 2018. doi: 10.1051/matecconf/201815605023

Last update: 2021-02-26 09:42:08

No citation recorded.