BIOSINTESA SENYAWA FENOLIK ANTIOKSIDAN DARI LIMBAH KULIT PISANGKEPOK (Musa acuminata balbisiana C.) SECARA FERMENTASI SUBMERGED MENGGUNAKAN RHIZOPUS ORYZAE

Andre Siswaja -  Universitas Katolik Widya Mandala Surabaya, Indonesia
Adhitia Gunarto -  Universitas Katolik Widya Mandala Surabaya, Indonesia
*Ery Susiany Retnoningtyas -  Universitas Katolik Widya Mandala Surabaya, Indonesia
Aning Ayucitra -  Universitas Katolik Widya Mandala Surabaya, Indonesia
Received: 25 Jun 2015; Published: 7 Oct 2015.
Open Access
Citation Format:
Article Info
Section: Research Article
Language: ID
Full Text:
Statistics: 1278 1686
Abstract

BIOSYNTHESIS OF PHENOLIC ANTIOXIDANT COMPOUNDS FROM KEPOK BANANA PEEL WASTE (Musa acuminata balbisiana C.) USING SUBMERGED FERMENTATION  BY RHIZOPUS ORYZAE. Phenolic antioxidant compounds can be formed through a process of biosynthesis with the help of microorganism. Kepok banana peel waste contains nutrients that support the growth of Rhizopus oryzae producing phenolic antioxidant compounds through its secondary metabolism. The objective of this research was to study the effects of fermentation time, concentration of Kepok banana peel extracts, and concentration of (NH4)2SO4 on Total Phenolic Content (TPC) of extracts substrate. Total Antioxidant Capacity (TAC) of extracts with the highest TPC value was also measured. TPC of extracts were analyzed by Folin-Ciocalteu method whilst TAC by 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Rhizopus oryzae was grown on a substrate containing kepok banana peel extract (500 g of kepok banana peel/L of water and 1000 g of kepok banana peel/L of water), (NH4)2SO4, and other nutrients. Results showed that extracts with the highest phenolic content were obtained after 72 hours fermentation on substrate containing 32.69 mg/mL of glucose (concentration of kepok banana peel 1000 g/L of water) and 0.25% w/v (NH4)2SO4. The substrate had TPC of 582.07 mg Gallic Acid Equivalent (GAE)/L extract with TAC of 88.37%.

Keywords: biosynthesis; kepok banana peel; phenolic antioxidant; Rhizopus oryzae

Abstrak

Senyawa fenolik antioksidan dapat terbentuk melalui proses biosintesa dengan bantuan Rhizopus oryzae menggunakan substrat limbah kulit pisang kepok. Limbah kulit pisang kepok belum banyak dimanfaatkan dan memiliki nilai ekonomi rendah. Di sisi lain, kulit pisang kepok mengandung sejumlah nutrisi yang dapat mendukung pertumbuhan Rhizopus oryzae dalam memproduksi senyawa fenolik antioksidan. Penelitian ini bertujuan untuk mempelajari pengaruh waktu fermentasi, konsentrasi ekstrak kulit pisang kepok, dan konsentrasi (NH4)2SO4 terhadap perolehan senyawa fenolik, serta mempelajari Total Antioxidant Capacity (TAC) untuk ekstrak dengan perolehan senyawa fenolik tertinggi. Dalam penelitian ini, Rhizopus oryzae ditumbuhkan pada substrat ekstrak kulit pisang kepok dengan variasi 500 g kulit pisang kepok/L air dan 1000 g kulit pisang kepok/L air serta penambahan (NH4)2SO4 dengan variasi konsentrasi. Total Phenolic Content (TPC) diukur menggunakan metode Folin-Ciocalteu, sedangkan Total Antioxidant Capacity (TAC) dianalisis dengan metode DPPH (2,2-diphenyl-1-picrylhydrazyl). Hasil penelitian menunjukkan bahwa TPC tertinggi terkandung dalam konsentrasi ekstrak kulit pisang kepok 1000 g/L air dengan  penambahan 0,25% b/v (NH4)2SO4) yaitu 582,07 mg Gallic Acid Equivalent (GAE)/L ekstrak dengan TAC 88,37% setelah fermentasi 72 jam.

Kata kunci: biosintesa; kulit pisang kepok; fenolik  antioksidan; Rhizopus oryzae

Keywords
antioksidan; biosintesa; fenolik; kulit pisang kepok; Rhizopus oryzae

Article Metrics:

  1. Andayani, R., Lisawati, Y., Maimunah, (2008), Penentuan aktivitas antioksidan, kadar fenolat total, dan likopen pada buah tomat, Jurnal Sains dan Teknologi Farmasi, 13.
  2. Barrios-González, J., Fernández, F.J., Tomasini, A., Mejía, A., (2005), Secondary metabolites production by solid-state fermentation, Malays J Microbiol., 1, pp. 1–6.
  3. Da Silva, L.H., Celeghini, R.M.S., Chang, Y.K., (2011), Effect of the fermentation of whole soybean flouron the conversion of isoflavones from glycosides to aglycones, Food Chem., 128, pp. 640–644.
  4. Direktorat Jenderal Hortikultura, (2005), Angka Tetap Komoditas Hortikultura Tahun 2004, Jakarta, Direktorat Jenderal Hortikultura.
  5. Halliwell, B., (1996), Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans, Free Rad. Res., 25, pp. 57–74.
  6. Huynh, N.T., Camp, J.V., Smagghe, G., Raes, K., (2014), Improved release and metabolism of flavonoids by steered fermentation processes: a review, Int. J. Mol. Sci., 15, pp. 19369-19388.
  7. Marinova, D., Ribarova, F., Atanassova, M., (2005), Total phenolics and total flavonoids in bulgarian fruits and vegetables, Journal of the University of Chemical Technology and Metallurgy, 40(3), pp. 255-260.
  8. Martins, S., Mussatto, S.I., Avila, G.M., Saenz, J.M., Aguilar, C.N., Teixeira, J.A., (2011), Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review, Biotechnology Advances, 29, pp. 365-373.
  9. Nagarajaiah, S.B., Prakash, J., (2011), Chemical composition and antioxidant potential of peels from three varieties of banana, As. J. Food Ag-Ind., 4(01), pp. 31-46.
  10. Nigam, P.S., Pandey, A., (2009), Biotechnology for Agroindustrial Residues Utilization, Netherlands, Springer.
  11. Schmidt, C.G., Gonçalves, L.M., Prietto, L., Hackbart, H.S., Furlong, E.B., (2013), Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae, Food Chem., 146, pp. 371–377.
  12. Shetty, K., Wahlqvist, M., (2004), A model for the role of the proline-linked pentose phosphate pathway in phenolic phytochemical biosynthesis and mechanism of action for human health and environmental applications, Asia Pacific J. Clin. Nutr., 13(1), pp. 1-24.
  13. Sudarmadji, S., Haryono, B., Suhardi, (2007), Prosedur Analisa Untuk Bahan Makanan dan Pertanian, Yogyakarta, Liberty.