skip to main content

ANTIBACTERIAL ACTIVITY FROM ETHANOL AND ETHYL ACETATE EXTRACTS OF Padina pavonica HAUCK FROM KABUNG ISLAND AGAINST Escherichia coli

Warsidah Warsidah scopus  -  Marine Science Department, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Pontianak, Kalimantan Barat, Indonesia
*Ikha Safitri scopus  -  Marine Science Department, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Pontianak, Kalimantan Barat, Indonesia
Mega Sari Juane Sofiana  -  Marine Science Department, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Pontianak, Kalimantan Barat, Indonesia
Shifa Helena  -  Marine Science Department, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Pontianak, Kalimantan Barat, Indonesia

Citation Format:
Abstract
Macroalgae is marine biological resources that play a crucial role and have an important economic value. They synthesize bioactive compounds with different kind of biological activities, such as antioxidant, antitumor, including antibacterial. In the health sector, infectious diseases from bacteria is one of the problems that still increasing. In addition, E. coli besides having the capacity to be pathogenic agent, it also showed mutlidrug resistence (MDR). Antibiotic resistance is a serious problem worldwide. The increase of this phenomenon leads to the exploration of new antibiotics using natural resources as an effort to overcome the problem. Padina pavonica Hauck belongs to Phaeophyceae spreeding along Kabung Island waters, but its existence has not been widely used. The objective of this study was to evaluate antibacterial activity from ethanol and ethyl acetate extract of P. pavonica Hauck from Kabung Island, West Kalimantan against E. coli. The extraction was  made using ethanol and ethyl acetate solvents, and the antibacterial activity test was realized with concentration series of 5 ppm, 10 ppm, 15 ppm, and 20 ppm. The quantitative assessment of the antibacterial test showed that both ethanol and ethyl acetate extracts of P. pavonica Hauck had potential antibacterial activity against E. coli. The inhibition zone of ethanol extract was 11.6 mm, while ethyl acetate extract was 12.6 mm, respectively. These two solvents were included to the bacteriostatic category.
Fulltext View|Download
Keywords: antibacterial; ethanol; ethyl acetate; Escherichia coli; Kabung Island ;Padina pavonica.

Article Metrics:

  1. Ahlstrom, C.A., Bonnedahl, J., Woksepp, H., Hernandez, J., Olsen, B., Ramey, A.M. (2018). Acquisition and dissemination of cephalosporin-resistant E. coli in migratory birds sampled at an Alaska landfill as inferred through genomic analysis. Sci. Rep., 8: 1-12. DOI: 10.1038/s41598-018-25474-w
  2. Ajizah, A. (2004). Sensitivitas Salmonella typhimurium terhadap Ekstrak Daun Psidium Guajava L. Bioscientie, 1(1): 31- 38. DOI: https://doi.org/10.20527/b.v1i1.130
  3. Akremi, N., Cappoen, D., Anthonissen, R., Verschaeve, L., Bouraoui, A. (2017). Phytochemical and in vitro antimicrobial and genotoxic activity in the brown algae Dictyopteris membranacea. S. Afr. J. Bot., 108: 308-314. https://doi.org/10.1016/j.sajb.2016.08.009
  4. Al-Khazan, M.M., Omar, H.H., Gumgumjee, N.M., Shiekh, H.M., El-Gendy, A.M. (2016). Marine macroalgae as a potential source of bioactive natural products with antibacterial activity. Main Gr. Chem., 15: 139-151. https://doi.org/10.3233/MGC-150193
  5. Anggadiredja, J.T.; Zatnika, A.; Purwoto, H.; dan Istini, S. (2008). Rumput Laut, Pembudidayaan, Pengolahan, dan Pemasaran Komoditas Perikanan Potensial. Jakarta : Penebar Swadaya. 147 hlm
  6. Balouiri, M., Sadiki, M., Ibnsouda, S.K. (2016). Methods for In Vitro Evaluating Antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2): 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
  7. Barsanti, L., Gualtieri, P. (2014). Algae Anatomy, Biochemistry and Biotechnology; CRC Press: Boca Raton, FL, USA
  8. Basmal, J., Utomo, B.S.B., Tazwir, Murdinah, Wikanta, T., Marraskuranto, E., Kusumawati, R. (2013). Membuat Alginat dari Rumput Laut Sargassum. Jakarta: Penebar Swadaya. 92 hlm
  9. Biris-Dorhoi, E., Michiu, D., Pop, C.R., Rotar, A.M., Tofana, M., Pop, O.L., Socaci, S.A., Farcas, A.C. (2020). Macroalgae - A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients, 12(3085): 1-23. https://doi.org/10.3390/nu12103085
  10. Bogolitsyn, K., Dobrodeeva, L., Druzhinina, A., Ovchinnikov, D., Parshina, A., Shulgina, E. (2019). Biological activity of a polyphenolic complex of Arctic brown algae. J. Appl. Phycol., 31, 3341-3348. DOI: 10.1007/s10811-019-01840-7
  11. Brooks, G.F., Butel, J.S., Morse S.A. (2007). Mikrobiologi Kedokteran, Jawetz, Melnick & Adelberg. Terjemahan Staf Pengajar Mikrobiologi FK Unair dari Medical Microbiology, EGC, Jakarta
  12. Bueno, A.M., Marcílio Candido, T., Morocho-Jácome, A.L., Rolim Baby, A., Robles Velasco, M.V., M de Carvalho, J.C. (2017). Cosmetic attributes of algae–A review. Algal Res., 25: 483-487. https://doi.org/10.1016/j.algal.2017.05.019
  13. Choi, J.G., Kang, O.H., Brice, O.O., Lee, Y.S., Chae, H.S., Oh, Y.C., Sohn, D.H., Park, H., Choi, H.G., Kim, S.G., Shin, D.W., Kwon, D.Y. (2010). Antibacterial activity of Ecklonia cava against methicillin-resistant Staphylococcus aureus and Salmonella spp. Foodborne Pathogen Disease, 7(4): 435-441. https://doi.org/10.1089/fpd.2009.0434
  14. Corsetto, P.A., Montorfano, G., Zava, S., Colombo, I., Ingadottir, B., Jonsdottir, R., Sveinsdottir, K., Rizzo, A.M. (2020). Characterization of Antioxidant Potential of Seaweed Extracts for Enrichment of Convenience Food. Antioxidants, 9(249): 1-15. doi: 10.3390/antiox9030249
  15. Cox, S., Abu-Ghannam, N., Gupta, S. (2010). An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int. Food Res. J., 17, 205-220. DOI :10.21427/D7HC92
  16. Croxen, M.A., Law, R.J., Scholz, R., Keeney, K.M., Wlodarska, M., Finlay, B.B. (2013). Recent Advances in Understanding Enteric Pathogenic Escherichia coli. Clin. Microbiol. Rev., 26: 822-880. DOI: https://doi.org/10.1128/CMR.00022-13
  17. Cushnie, T. and Lamb, A.J. (2005). Antimicrobial Activity of Flavonoids. International Journal of Antimicrobial Agents, 26: 343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
  18. Eom, S.H., Lee, D.S., Jung, Y.J., Park, J.H., Choi, J.I., Yim, M.J., Jeon, J.M., Kim, H.W., Son, K.T., Je, J.Y.. (2014). The mechanism of antibacterial activity of phlorofucofuroeckol-A against methicillin-resistant Staphylococcus aureus. Appl. Microbiol. Biotechnol., 98, 9795-9804. DOI: 10.1007/s00253-014-6041-8
  19. Ertürk, Ö., Tas, B. (2011). Antibacterial and antifungal effects of some marine algae. Kafkas Univ. Vet. Fak. Derg., 17, 121-124
  20. Escherich, T. (1885). Die Darmbakterien des Neugeborenen und Sauglings. Fortschr. Med. 3: 515-522, 547-554
  21. Fayad, S., Nehmé, R., Tannoury, M., Lesellier, E., Pichon, C., Morin, P. (2017). Macroalga Padina pavonica water extracts obtained by pressurized liquid extraction and microwave-assisted extraction inhibit hyaluronidase activity as shown by capillary electrophoresis. J. Chromatogr. A., 1497, 19-27. DOI: 10.1016/j.chroma.2017.03.033
  22. Fayaz, M.K.K., Namitha, K.N., Chidambara, M.M., Mahadeva, S.R., Sarada, S.K., Subbarao, P.V. (2005). Chemical composition, Iron bioavailability and antioxidant activity of Kappaphycus alvarezii (Doty). J Agri Food Chem, 53: 792-797. DOI: 10.1021/jf0493627
  23. Fitrial, Y., Astawan, M., Soekarto, S.S., Wiryawan, K.G., Wresdiyati, T., Khairina, R. (2008). Antibakteri Ekstrak Biji Teratai (Nymphaea pubescens Wild) terhadap Bakteri Patogen Penyebab Diare. Jurnal Biosfera, 33(3): vol. 33, no.3, September 2016, hh. 126-133
  24. Garcia-Vaquero, M., Ummat, V., Tiwari, B., Rajauria, G. (2020). Exploring ultrasound, microwave and ultrasound–microwave assisted extraction technologies to increase the extraction of bioactive compounds and antioxidants from brown macroalgae. Mar. Drugs, 18: 172. DOI: 10.3390/md18030172
  25. Haryani, T.S., Triastinurmiatiningsih, Bina, L.S. (2014). Efektivitas Ekstrak Padina australis sebagai Antibakteri Escerichia coli Penyebab Diare. Prosiding Seminar Nasional Biodiversitas V. Universitas Surabaya
  26. Haryani, T.S., Triastinurmiatiningsih, Ardiani W. (2015). Efektivitas Ekstrak Padina australis sebagai Antibakteri Vibrio cholerae dan Salmonella typhii. J Ekologia, 15(1). 16-20. DOI: 10.33751/ekol.v15i2.197
  27. Hidayah, N., Hisan, A.K., Solikin, A., Irawati, Mustikaningtyas, D. (2016). Uji Efektivitas Ekstrak Sargassum muticum sebagai Alternatif Obat Bisul Akibat Aktivitas Staphylococcus aureus. Journal of Creativity Students, 1(1): 1-9
  28. Irwandi, Salwiyah, Nurgayah WA. (2017). Struktur komunitas makroalga pada substrat yang berbeda di Perairan Desa Tanjung Tiram Kecamatan Moramo Utara Kabupaten Konawe Selatan Provinsi Sulawesi Tenggara. Jurnal Manejemen Sumberdaya Perairan, 2(3): 215-224
  29. Ismail, G.A., Gheda, S.F., Abo-Shady, A.M., Abdel-Karim,O.H. (2019). In vitro potential activity of some seaweeds as antioxidants and inhibitors of diabetic enzymes. Food Science and Technology, 40(3): 681-691. DOI: 10.1590/fst.15619
  30. Izzati, M. (2007). Skreening potensi antibakteri pada beberapa spesies rumput laut terhadap bakteri patogen pada Udang Windu. Bioma, 9(2): 62-67. https://doi.org/10.14710/bioma.9.2.62-67
  31. John, D.M. and Al-Thani, R.F. (2014). Benthic marine algae of the Arabian Gulf: a critical review and analysis of distribution and diversity patterns. Nova Hedwigia, 98(3-4): 341-392. DOI: 10.1127/0029-5035/2014/0156
  32. Juliantina, F., Citra, D.A., Nirwani, B., Nurmasitoh, T., Bowo, E.T. (2008). Manfaat Sirih merah (Piper crocatum) sebagai Agen Antibakterial terhadap Bakteri Gram positif dan Gram Negatif. Jurnal Kedokteran dan Kesehatan Indonesia, Universitas Islam Indonesia, Yogyakarta
  33. Kavita, K., Singh, V.K., Jha, B. (2014). 24-Branched Δ5 sterols from Laurencia papillosa red seaweed with antibacterial activity against human pathogenic bacteria. Microbiological Research, 169(4): 301-306. https://doi.org/10.1016/j.micres.2013.07.002
  34. Kim, Y.B., Moon Y.G., Heo, M.S. (2008). Antioxidant and antimicrobial activities of seaweed, Ecklonia cava. Journal of Biotechnology, 136: 589-601. DOI: 10.1016/j.jbiotec.2008.07.1211
  35. Kiroquero, J.R. (2015). Bioactivity of the crude extract from Padina japonica Yamada (Phaeophyta, Dictyotales). J. Environment and Aquatic Resources, 3: 67-74
  36. Klomjit, A., Praiboon, J., Tiengrim, S., Chirapart, A., Thamlikitkul, V. (2021). Phytochemical Composition and Antibacterial Activity of Brown Seaweed, Padina australis against Human Pathogenic Bacteria. Journal of Fisheries and Environment, 45 (1): 8-22
  37. Kosanic, M., Rankovic, B., Stanojkovic, T. (2019). Brown macroalgae from the Adriatic Sea as a promising source of bioactive nutrients. J. Food Meas. Charact., 13, 330-338. DOI: 10.1007/s11694-018-9948-4
  38. Leandro, A., Pereira, L., Gonçalves, A.M.M. (2020). Diverse Applications of Marine Macroalgae. Mar. Drugs 2020, 18(17): 1-15. DOI: 10.3390/md18010017
  39. Lopes, G., Pinto, E., Andrade, P.B., Valentão, P. (2013). Antifungal Activity of Phlorotannins against Dermatophytes and Yeasts: Approaches to the Mechanism of Action and Influence on Candida albicans Virulence Factor. PLoSONE, 8, e72203. DOI: 10.1371/journal.pone.0072203
  40. MacArtain P., Gill, C.I.R, Brooks, M., Campbell, R., Rowland, I.R. (2007). Nutritional Value of Edible Seaweeds. Nutrition Reviews, 65: 535-543. DOI: 10.1301/nr.2007.dec.535-543
  41. Madduluri, S., Rao, K.B., Sitaram, B. (2013). In Vitro Evaluation of Antibacterial Activity of Five Indigenous Plants Extract Against Five Bacterial Pathogens of Human. International Journal of Pharmacy and Pharmaceutical Sciences, 5(4): 679-684
  42. Melka, N.H. (2009). Uji Aktivitas Antioksidan Karaginan dalam Alga Merah Jenis Eucheuma spinosium dan Gracillaria verrucosa. Universitas Islam Negeri Malang. Malang
  43. Omar, H.H., Shiekh, H.M., Gumgumjee, N.M., El-Kazan, M.M., El-Gendy, A.M. (2012). Antibacterial activity of extracts of marine algae from the Red Sea of Jeddah, Saudi Arabia. Afr. J. Biotechnol, 11, 13576-13585. DOI: 10.5897/AJB12.780
  44. Parija. (2009). Textbook of Microbiology & Immunology, Elsevier, India
  45. Peng, J., Yuan, J.P., Wu, C.F., Wang, J.H. (2011). Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar. Drugs, 9, 1806-1828. DOI: 10.3390/md9101806
  46. Rajauria, G. and N. Abu-Ghannum. (2013). Isolation and partial characterization of bioactive fucoxanthin from Himanthalia elongata brown seaweed: A TLC-based approach. International Journal of Analytical Chemistry, 802573. DOI: 10.1155/2013/802573.DOI:10.1155/2013/802573
  47. Robinson, T. (1995). Kandungan Organik Tumbuhan Tinggi, diterjemahkan oleh Kokasih Padmawinata, ITB, Bandung, pp. 47
  48. Rodrigues, D., Alves, C., Horta, A., Pinteus, S., Silva, J., Culioli, G., Thomas, O.P., Pedrosa, R. (2015). Antitumor and antimicrobial potential of bromoditerpenes isolated from the red alga, Sphaerococcus coronopifolius. Marine Drugs, 13: 713-726. DOI: 10.3390/md13020713
  49. Rupérez, P. (2002). Mineral content of edible marine seaweeds. Food Chem., 79, 23-26. DOI: 10.1016/S0308-8146(02)00171-1
  50. Salem, W.M., Galal, H., Nasr, E.F. (2011). Screening for antibacterial activities in some marine algae from The Red Sea (Hurghada, Egypt). African Journal of Microbiology Research, 5(15): 2160-2167. DOI: 10.5897/AJMR11.390
  51. Salosso, Y., Aisiah, S., Toruan, L.N.L., Pasaribu, W. (2020). Nutrient Content, Active Compound, and Antibacterial Activity of Padina australis against Aeromonas hydropilla. Pharmacogn J., 12(4): 771-776. DOI: 10.5530/pj.2020.12.110
  52. Sameeh, M.Y., Mohamed, A.A., Elazzazy, A.M. (2016). Polyphenolic contents and antimicrobial activity of different extracts of Padina boryana Thivy and Enteromorpha sp marine algae. Journal of Applied Pharmaceutical Science, 6(09): 087-092. DOI: 10.7324/JAPS.2016.60913
  53. Savitri, I., Suhendra, L., Wartini, N.M. (2017). Pengaruh Jenis Pelarut pada Metode Maserasi terhadap Karakteristik Ekstrak Sargassum polycystum. Jurnal Rekayasan dan Manajemen Agroindustri, 5(3)
  54. Shannon, E., Abu‐Ghannam, N. (2016). Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Mar. Drugs, 14, 81. https://doi.org/10.3390/md14040081
  55. Silva, A.,, Silva, S.A., Carpena, M., Garcia-Oliveira, P., Gullón, P., Barroso, M.F., Prieto, M.A., Simal-Gandara, J. (2020). Macroalgae as a Source of Valuable Antimicrobial Compounds: Extraction and Applications. Antibiotics, 9(642): 1-41. https://doi.org/10.3390/antibiotics9100642
  56. Smith, A.J. (2004). Medicinal and pharmaceutical uses of seaweed natural products: A review. Journal of Applied Phycology, 16: 245-262. DOI: 10.1023/B:JAPH.0000047783.36600.ef
  57. Sofiana, M.S.J., Safitri, I., Helena, S., Warsidah. (2021). Phytochemical Screening, Total Phenolic Content and Antioxidant Activity of Tropical Brown Macroalgae Padina Pavonica Hauck From Kabung Island, West Kalimantan. Saintek Perikanan: Indonesian Journal of Fisheries Science and Technology, 17(1) : 32-36. DOI: https://doi.org/10.14710/ijfst.17.1.%25p
  58. Stiger‐Pouvreau, V., Bourgougnon, N., Deslandes, E. (2016). Carbohydrates from Seaweeds. In Seaweed in Health and Disease Prevention; Elsevier Inc.: Amsterdam, The Netherlands, doi: 10.1016/B978‐0‐12‐802772‐1.00008‐7
  59. Suárez-Pérez, A., Corbera , J.A., González-Martín, M., Tejedor-Junco, M.T. (2021). Multidrug-Resistant Phenotypes of Escherichia coli Isolates in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis). Animals, 11(1692): 1-9. doi: 10.3390/ani11061692
  60. Sudhakar, K., Mamat, R., Samykano, M., Azmi, W.H., Ishak, W.F.W., Yusaf, T. (2018). An overview of marine macroalgae as bioresource. Renewable and Sustainable Energy Reviews, 91: 165-179. https://doi.org/10.1016/j.rser.2018.03.100
  61. Vidotti, E.C., Rollemberg, M., Do, C.E. (2014). Algas: Da economia nos ambientes aquáticos à biorremediação e àquímica analítica. Quim. Nova, 27, 139-145. DOI: 10.1590/S0100-40422004000100024
  62. Warsidah, Fadly, D., Bohari. (2020). Antibacterial and Anti-inflammatory Activities of Ethanol Extract Obtained from The Hooks of Uncaria tomentosa (Wild. Ex Schult) DC Originated Kalimantan, Indonesia. Syst. Rev. Pharm, 11: 65-70. DOI: 10.31838/srp.2020.7.11
  63. Wei, Y., Liu, Q., Xu, C., Yu, J., Zhao, L., Guo, Q. (2016) Damage to the Membrane Permeability and Cell Death of Vibrio parahaemolyticus Caused by Phlorotannins with Low Molecular Weight from Sargassum thunbergii. J. Aquat. Food Prod. Technol., 25, 323-333. https://doi.org/10.1080/10498850.2013.851757
  64. Wijayanti, N.D.N., Sudjarwo, G.W., Putra, O.N. (2021). Antibacterial Activity 96% Ethanol Extract of Brown Seaweed (Padina australis) from Poteran Island Madura against Staphylococcus aureus ATCC 25923. Biomedical & Pharmacology Journal, 14(2): 1-6. https://dx.doi.org/10.13005/bpj/2209
  65. Zeid, A.H.A., Aboutabl, E.A., Sleem, A.A., El-rafie, H.M. (2014). Water soluble polysaccharides extracted from Pterocladia capillacea and Dictyopteris membranacea and their biological activities. Carbohydr. Polym. 4(113): 62-66. doi: 10.1016/j.carbpol.2014.06.004

Last update:

No citation recorded.

Last update: 2024-11-20 20:12:02

No citation recorded.