skip to main content

PENGARUH pH, SUHU DAN JENIS SUBSTRAT TERHADAP AKTIVITAS KITINASE Bacillus sp. RNT9

*Satrio Adil Pamungkas  -  Department of Fisheries, Universitas Gadjah Mada, Jl. Flora Bulaksumur, Karang Malang, Caturtunggal, Depok, Sleman Regency, Special Region of Yogyakarta 55281, Indonesia
Indun Dewi Puspita  -  Departemen Perikanan, Universitas Gadjah Mada, Jl. Flora Bulaksumur, Karang Malang, Caturtunggal, Depok, Sleman Regency, Special Region of Yogyakarta 55281, Indonesia
Ustadi Ustadi  -  Departemen Perikanan, Universitas Gadjah Mada, Jl. Flora Bulaksumur, Karang Malang, Caturtunggal, Depok, Sleman Regency, Special Region of Yogyakarta 55281, Indonesia

Citation Format:
Abstract

Limbah perikanan yang berasal dari udang, kepiting, dan kerang, umumnya mengandung kitin yang merupakan suatu polisakarida. Kitin memiliki struktur polimer linier yang terdiri dari monomer β-1,4-N-asetil-D-glukosamin, dan memiliki banyak manfaat dalam bentuk produk turunannya. Produk turunan kitin, seperti glukosamin dan N-Asetilglukosamin, memiliki nilai ekonomi yang tinggi sebagai bahan baku alternatif di berbagai industri seperti farmasi dan pangan. Proses degradasi kitin menjadi senyawa tersebut dapat dilakukan melalui reaksi enzimatis dengan bantuan enzim kitinase yang diproduksi oleh bakteri. Penelitian ini bertujuan untuk mengetahui pengaruh pH (6, 7 dan 8), suhu (30ºC, 35ºC dan 40ºC) dan jenis substrat (koloidal kitin, kitin serbuk dan tepung cangkang udang) terhadap aktivitas kitinase Bacillus sp. RNT9. Parameter yang diuji adalah aktivitas kitinase (U/mL) dan kadar N-Asetilglukosamin (NAG) medium (ppm). Kedua parameter ini diukur secara kuantitatif dengan metode kolorimetri. Hasil penelitian menunjukan bahwa kondisi terbaik untuk menghasilkan aktivitas kitinase pada Bacillus sp. RNT9 adalah dengan medium pH 8, suhu inkubasi 35ºC dan jenis substrat kitin koloidal. Aktivitas kitinase tertinggi yang diproduksi Bacillus sp. RNT9 berturut-turut sebesar 0,0008 U/mL pada perlakuan pH 8 pada hari ke-2 fermentasi, 0,0013 U/mL yang diperoleh pada perlakuan suhu 35ºC hari untuk ke-4 dan 0,0010 U/mL yang diperoleh pada perlakuan jenis substrat koloidal kitin untuk hari ke-2 fermentasi. Konsentrasi NAG mencapai nilai tertinggi pada optimasi pH 8 untuk hari ke-2 fermentasi sebesar 9,5968 ppm. Pada optimasi suhu 35ºC untuk hari ke-4 fermentasi sebesar 32,387 ppm serta pada perlakuan optimasi jenis substrat koloidal kitin untuk hari ke-4 fermentasi sebesar 26,031 ppm.

 

Fishery waste originating from shrimp, crabs and clams, generally contains chitin which is a polysaccharide. Chitin has a linear polymer structure consisting of β-1,4-N-acetyl-D-glucosamine monomers, and has many benefits in the form of its derivative products. Chitin derivative products, such as glucosamine and N-acetylglucosamine, have high economic value as alternative raw materials in various industries such as pharmaceuticals and food. The process of degradation of chitin into these compounds can be carried out through enzymatic reactions with the help of chitinase enzymes produced by bacteria. This study aims to determine the effect of pH (6, 7 and 8), temperature (30ºC, 35ºC and 40ºC) and type of substrate (colloidal chitin, chitin powder and shrimp shell flour) on the chitinase activity of Bacillus sp. RNT9. The parameters tested were chitinase activity (U/mL) and medium N-Acetylglucosamine (NAG) levels (ppm). Both of these parameters were measured quantitatively by the colorimetric method. The results showed that the best conditions for producing chitinase activity in Bacillus sp. RNT9 is with a medium of pH 8, incubation temperature of 35ºC and the type of substrate is colloidal chitin. The highest chitinase activity produced by Bacillus sp. RNT9 was 0,0008 U/mL, respectively, at pH 8 treatment on the 2nd day of fermentation, 0,0013 U/mL obtained at 35ºC temperature treatment for the 4th day and 0,0010 U/mL obtained at treatment type of chitin colloidal substrate for the 2nd day of fermentation. The concentration of NAG reached the highest value at the optimization of pH 8 for the 2nd day of fermentation of 9,5968 ppm. At the optimization temperature of 35ºC for the 4th day of fermentation it was 32,387 ppm and at the optimization treatment of chitin colloidal substrate for the 4th day of fermentation it was 26,031 ppm.

Fulltext View|Download
Keywords: Bacillus sp. RNT9; jenis substrat; kitinase; pH; suhu

Article Metrics:

  1. Anggraini, W. (2015). Pengaruh pH terhadap aktivitas enzim kitinase dari isolat Actinomycetes dengan metode Somogyi-Nelson. Jurnal Ilmiah Pendidikan Fisika Al Biruni, 4(2), 217-228
  2. https://doi.org/10.24042/jipfalbiruni.v4i2.94
  3. Anggraini, M. (2003). Isolasi Bakteri Penghasil Protease Alkalin dan Karakterisasi Enzim. Skripsi Institut Pertanian Bogor. Bogor
  4. Ariyadi, T., Dewi, S. (2009). Pengaruh sinar ultra violet terhadap pertumbuhan bakteri Bacillus sp. sebagai bakteri kontaminan. Jurnal Kesehatan UNIMUS, 2(2), 20-25
  5. Arnold, N., Solomon. (1986). Manual of Industrial Microbiology and Biotechnology. American Society for Microbiology. Washington
  6. Bhushan, B. (2000). Production and characterization of a thermostable chitinase from a new alkalophilic Bacillus sp. BG‐11. Journal of applied microbiology, 88(5), 800-808
  7. Cheba, B. A., Zaghloul, T. I., EL-Mahdy, A. R., & EL-Massry, M. H. (2016). Effect of pH and temperature on Bacillus sp. R2 chitinase activity and stability. Procedia Technology, 22, 471-477. https://doi.org/10.1016/j.protcy.2016.01.092
  8. Dahlan, A., Wahyuni, S., Ansharullah. (2017). Morfologi dan karakterisasi pertumbuhan bakteri asam laktat (UM 1.3A) dari proses fermentasi wikau maombo untuk studi awal produksi enzim amilase. Jurnal Sains dan Teknologi Pangan (JSTP), 2(4), 657-663
  9. http://dx.doi.org/10.33772/jstp.v2i4.3557
  10. Dick, W. A., Cheng, L., & Wang, P. (2000). Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biology and Biochemistry, 32(13), 1915-1919. https://doi.org/10.1016/S0038-0717(00)00166-8
  11. KKP (Kementrian Kelautan dan Perikanan Republik Indonesia). (2015). MEA Center “Maritime and Sector Fisheries”
  12. Dhananjaya, I. G. (2018). Pengaruh pH, Suhu dan Jenis Substrat Terhadap Aktivitas Kitinase Bacillus cereus SMG 1.1. Skripsi Sarjana Universitas Gadjah Mada. Yogyakarta
  13. Donderski, W., & Trzebiatowska, M. (1999). Chitinase activity production by planktonic, benthic and epiphytic bacteria inhabiting the Moty Bay of the Jeziorak Lake (Poland). Polish Journal of Environmental Studies, 8, 215-220
  14. Elias, M., Wieczorek, G., Rosenne, S., & Tawfik, D. S. (2014). The universality of enzymatic rate–temperature dependency. Trends in Biochemical Sciences, 39(1), 1-7. https://doi.org/10.1016/j.tibs.2013.11.001
  15. Gomaa, E. Z. (2012). Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol. The journal of Microbiology, 50(1), 103-111. https://doi.org/10.1007/s12275-012-1343-y
  16. Haedar, N., Fahruddin, F., Aryanti, W., & Natsir, H. (2017). Produksi dan karakterisasi enzim kitinase dari bakteri kitinolitik asal kerang Anadara granosa. Jurnal Ilmu Alam dan Lingkungan, 8(1)
  17. https://doi.org/10.20956/jal.v8i15.2996
  18. Hardi, J., Ruslan, R., Razak, A. R., & Silva, S. (2017). Karakterisasi Enzim Kitinase dari Isolat Bakteri Termofilik B1211 Asal Air Panas Bora. KOVALEN: Jurnal Riset Kimia, 3(2), 172-179
  19. Haryogya, A. M. (2020). Isolation and Molecular Identification of Chitinolytic Bacteria from Ronto. In E3S Web of Conferences (Vol. 147, p. 03030). EDP Sciences
  20. https://doi.org/10.1051/e3sconf/202014703030
  21. Harini, I. N., Winarni, S., & Setyaningsih, E. (2004). Pemanfaatan Teknologi Pengolahan Limbah Kulit/Kepala Udang Menjadi Chitosan untuk Ingredient Pembuatan Permen di Home Industri Kebon Agung Kepanjen Malang. Jurnal Dedikasi, 1(2)
  22. Harper, H.A., Rodwel, V.W., Mayer, P.A. (1984). Review of Physiological Chemistry. Lange Medical Publication. California
  23. Herdyastuti, N., Raharjo, T. J., Mudasir, M., & Matsjeh, S. (2009). Chitinase and chitinolytic microorganism: Isolation, characterization and potential. Indonesian Journal of Chemistry, 9(1), 37-47. https://doi.org/10.22146/ijc.21580
  24. Herdyastuti, N., Cahyaningrum, S. E., Tamimi, M., & Wirawan, A. (2015). Modification of chitin as substrates for chitinase. African Journal of Biotechnology, 14(18), 1590-1595
  25. https://doi.org/10.5897/AJB2014.14178
  26. Hidayat, I. (2005). Pengaruh pH terhadap Aktivitas Endo-1, 4-β-Glucanase Bacillus sp. AR 009. Biodiversitas, 6(4), 242-244
  27. Hogg, S. (2005). Essential Microbiology. John Wiley and Sons, Inc. England. 528 hlm
  28. Hsu, S. C., & Lockwood, J. (1975). Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Applied microbiology, 29(3), 422-426. https://doi.org/10.1128/am.29.3.422-426.1975
  29. Imas, T., Hadioetomo, R.S., Gunawan, A. G., Setiadi, Y. (1989). Mikrobiologi Tanah II. PAU IPB. Bogor. 68 hlm
  30. Ilankovan, P., Hein, S., Ng, C. H., Trung, T. S., & Stevens, W. F. (2006). Production of N-acetyl chitobiose from various chitin substrates using commercial enzymes. Carbohydrate Polymers, 63(2), 245-250. https://doi.org/10.1016/j.carbpol.2005.08.060
  31. Illanes, A. (2008). Enzyme biocatalysis. Principles and Applications. Editorial Springer-Verlag New York Inc. United States. 56pp
  32. Islam, S., Rahman Bhuiyan, M.A., & Islam, M.N. (2017). Chitin and Chitosan: Structure, Properties, and Applications in Biomedical Engineering. J Polym Environ, 25, 854-866
  33. Kuk, J. H., Jung, W. J., Hyun Jo, G., Ahn, J. S., Kim, K. Y., & Park, R. D. (2005). Selective preparation of N-acetyl-D-glucosamine and N, N′-diacetylchitobiose from chitin using a crude enzyme preparation from Aeromonas sp. Biotechnology letters, 27(1), 7-11. https://doi.org/10.1007/s10529-004-6300-3
  34. Majtán, J., Bíliková, K., Markovič, O., Gróf, J., Kogan, G., & Šimúth, J. (2007). Isolation and characterization of chitin from bumblebee (Bombus terrestris). International journal of biological macromolecules, 40(3), 237-241. https://doi.org/10.1016/j.ijbiomac.2006.07.010
  35. Margino, S., & Ari Setyati, W. (2015). Pengaruh pH, Suhu Dan Salinitas Terhadap Pertumbuhan dan Produksi Asam Organik Bakteri Asam Laktat Yang Diisolasi Dari Intestinum Udang Penaeid. Indonesian Journal of Marine Sciences/Ilmu Kelautan, 20(4), 187-194
  36. Muharni, M., & Nurmawati, E. (2017). Pengujian Aktivitas Kitinase dari Bacillus Circulans Untuk Dikembangkan Sebagai Agen Biokontrol pada Penyakit Tanaman. Jurnal Penelitian Sains, 10(1). https://doi.org/10.56064/jps.v10i1.433
  37. Muzzarelli, R.A.A. (1977). Chitin. Pergamon Press Ltd. England
  38. Nikolov, S., Fabritius, H., Petrov, M., Friák, M., Lymperakis, L., Sachs, C., ... & Neugebauer, J. (2011). Robustness and optimal use of design principles of arthropod exoskeletons studied by ab initio-based multiscale simulations. Journal of the mechanical behavior of biomedical materials, 4(2), 129-145. https://doi.org/10.1016/j.jmbbm.2010.09.015
  39. Patil, R. S., Ghormade, V., & Deshpande, M. V. (2000). Chitinolytic enzymes: an exploration. Enzyme and microbial technology, 26(7), 473-483. https://doi.org/10.1016/S0141-0229(00)00134-4
  40. Pelczar, M.J., Chan, E.C.S. (1986). Dasar-dasar Mikrobiologi. UI Press. Jakarta
  41. Prakash, B., Perumai, P., Gowrishankar, J., Sivasankari, P., Ashokkumar, L., Tamilman. (2015). Optimization of Cultural Conditions for Production of Chitinase by Bacillus sp. Isolated from Agriculture Soil using Substrate as Marine Crab Shell Waste. International Journal of Current Microbiology and Applied Sciences, 4, 192-198
  42. Rahayu, S. (2000). Pemurnian dan Karakterisasi Kitinase dan Kitin Deasetilase Termostabil dari Isolat Bacillus K-29-14 Asal Kawah Lamojang, Jawa Barat. Thesis Institut Pertanian Bogor. Bogor
  43. Rahayu, S., Suhartati, F. M., Rimbawanto, E. A., & Iriyanti, N. (2003). Isolation and Identification of the Chitinolytic Bacteria from Rumen Ecosystem. Animal Production, 5(2), 73-78
  44. Rahmawati, D. (2011). Penentuan pH dan Suhu Optimum Aktivitas Kitinase Bacillus cereus I.5 dan Pengujian Kitinase dalam Mendegradasi Eksoskeleton Kutu Bertepung Putih (Ferrisia virgata Cockerel). Skripsi Sarjana Institut Pertanian Bogor. Bogor
  45. Reissig, J. L., Strominger, J. L., & Leloir, L. F. (1955). A modified colorimetric method for the estimation of N-acetylamino sugars. The Journal of Biological Chemistry, 217, 959-966
  46. Rudiger, A., Sunna, A., Antranikian, G. (1994). Enzymes from Extreme Thermophilic and Hyperthermophilic Archea and Bacteria. Di dalam: Carbohydrases, Handbook of Enzyme Catalysis in Organic Synthesis. VCH Verlagsgesellschafft. Weinhem
  47. Sari, B.W., Isnaini, N.B., Puspita, I.D., Husni, A., Ustadi. (2017). Pembentukan N-Asetilglukosamin dari Kitin Cangkang Udang oleh Serratia marcescens PT-6 yang dikultur pada berbagai pH dan Suhu. Jurnal Perikanan Universitas Gadjah Mada, 19(1), 53-59
  48. https://doi.org/10.22146/jfs.25961
  49. Sarnia, S., Natsir, H., & Dali, S. (2017). Produksi dan Karakterisasi Enzim Kitosanase Dari Isolat Bakteri Klebsiella sp. Techno: Jurnal Penelitian, 4(02), 08-15. http://dx.doi.org/10.33387/tk.v4i02.339
  50. Soeka, Y. S., & Sulistiani, S. (2012). Seleksi, Karakterisasi, dan Identifikasi Bakteri Penghasil Kitinase yang Diisolasi dari Gunung Bromo Jawa Timur. Jurnal Natur Indonesia, 13(2), 155-161. http://dx.doi.org/10.31258/jnat.13.2.155-161
  51. Souza, C.P., Almeida, B.C., & Colwell, R.R. (2011). The importance of chitin in the marine environment. Mar Biotechnol, 13: 823. https://doi.org/10.1007/s10126-011-9388-1
  52. Sumantha, A., Larroche, C., & Pandey, A. (2006). Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technology and Biotechnology, 44, 211-220
  53. Sumardi, S., Farisi, S., Ekowati, C. N., & Oktalia, S. A. (2019). Co-Culture Anoxygenic Photosynthetic Bacteria With Bacillus sp. Isolated From Hanura Beach Against Vibrio sp. Jurnal Ilmiah Biologi Eksperimen dan Keanekaragaman Hayati (J-BEKH), 6(2), 62-70. https://doi.org/10.23960/jbekh.v6i2.43
  54. Suryadi, Y., Priyatno, T. P., Susilowati, D. N., Samudra, I. M., Yudhistira, N., & Purwakusumah, E. D. (2013). Isolasi dan karakterisasi kitinase asal Bacillus cereus 11 UJ. Jurnal Biologi Indonesia, 9(1), 51-62
  55. Suryadi, Y., Priyatno, T. P., Samudra, I., Susilowati, D. N., Lawati, N., & Kustaman, E. (2013). Pemurnian parsial dan karakterisasi kitinase asal jamur entomopatogen Beauveria bassiana isolat BB200109. J. Agro Biogen, 9(2), 77-84
  56. Toharisman, A., Suhartono, M. T., Spindler-Barth, M., Hwang, J. K., & Pyun, Y. R. (2005). Purification and characterization of a thermostable chitinase from Bacillus licheniformis Mb-2. World Journal of Microbiology and Biotechnology, 21(5), 733-738. https://doi.org/10.1007/s11274-004-4797-1
  57. Wang, S. L., & Chang, W. T. (1997). Purification and characterization of two bifunctional chitinases/lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium. Applied and environmental microbiology, 63(2), 380-386. https://doi.org/10.1128/aem.63.2.380-386.1997
  58. Whitaker, J. R. (1994). Principle of enzymology for the food science. Marcel Decker. New York
  59. Widhyastuti, N. (2010). Purifikasi N-Asetil-D-glukosamina Hasil Sintesa Secara Enzimatis untuk Bahan Obat dan Pangan Fungsional. Laporan Akhir Program Insentif Peneliti dan Perekayasa LIPI. Pusat Penelitian Biologi Lembaga Ilmu Pengetahuan Indonesia. Bogor
  60. Yuli, P. E., Suhartono, M. T., Rukayadi, Y., Hwang, J. K., & Pyun, Y. R. (2004). Characteristics of thermostable chitinase enzymes from the indonesian Bacillus sp. 13.26. Enzyme and Microbial Technology, 35(2-3), 147-153. https://doi.org/10.1016/j.enzmictec.2004.03.017
  61. Yusriah, Y., & Kuswytasari, N. D. (2013). Pengaruh pH dan Suhu Terhadap Aktivitas Protease Penicillium sp. Jurnal Sains dan Seni ITS, 2(1), 2337-3520. 10.12962/j23373520.v2i1.2744
  62. Zhang, Y. H. P., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: screening and selection strategies. Biotechnology advances, 24(5), 452-481. https://doi.org/10.1016/j.biotechadv.2006.03.003

Last update:

No citation recorded.

Last update: 2025-01-15 09:12:17

No citation recorded.