skip to main content

Multi-Factor Optimization of Natural Rubber Formula for Friction of Natural Rubber Elastomer Material for Prosthesis Sole Applications

Optimasi Multi Faktor pada Formula Karet Alam terhadap Gesekan Material Elastomer Karet Alam untuk Aplikasi Telapak Kaki Prostesis

*Muhammad Khafidh scopus  -  Teknik Mesin, Universitas Islam Indonesia, Indonesia
Afi Muhammad Irfan  -  , Indonesia
Donny Suryawan  -  , Indonesia
Lilis Kistriyani  -  , Indonesia
Rifky Ismail  -  , Indonesia
Open Access Copyright (c) 2023 TEKNIK

Citation Format:
Indonesia is the world's second-largest producer of natural rubber. Various products can be made of natural rubber. One of them is a foot prosthesis. An essential criterion for foot prosthesis is a significant value of friction force to prevent slip during usage. The present study optimizes natural rubber formulation to obtain the largest friction force value. A pin-on-disk tribometer is used to obtain friction force values. The optimization method used in the present study is Taguchi Method Orthogonal Array L9, while the contribution of each control factor to increase friction is carried out using ANOVA analysis. Four control factors are used in this study: the type of natural rubber, the percentage of silica powder, the percentage of sulfur, and the vulcanization temperature. Each control factor has three different levels. The test results showed that the optimum formulation to obtain the highest friction value is a mixture of concentrated natural rubber and instant natural rubber, 30 phr of silica powder, 5 phr of sulfur, and 150°C of vulcanization temperature. The friction force of the optimum formulation increases by 33% compared to the baseline formulation. ANOVA analysis shows that the vulcanization temperature is the most crucial factor in increasing the friction force, contributing 62.58%.
Fulltext View|Download
Keywords: foot prosthesis; natural rubber; silica powder; Taguchi Method; friction
Funding: Kementerian Pendidikan, Kebudayaan, Riset dan Teknologi under contract 181/E5/PG.02.00.PL/2023.

Article Metrics:

  1. Abd Maleque, M., Harina, L., Bello, K., Azwan, M., & Rahman, M. M. J. J. T. (2018). Tribological properties of surface modified Ti-6Al-4V alloy under lubricated condition using Taguchi approach. 17, 15-28
  2. Bieliński, D., Stępkowska, A. J. A. o. c., & engineering, m. (2013). Mechanical properties and friction of rubber vulcanizates: Aspects of crosslink structure. 13, 192-198
  3. Fauziah, R. A., & Sriwarno, A. B. J. P. D. (2014). Pengembangan Desain Kaki Prostetik yang Berbasis Low-Cost untuk Industri Kecil Kaki Palsu Di Indonesia. 3(1), 180144
  4. Hadi, A., Oleiwi, J. K. J. J. o. M. S., & Engineering. (2015). Improving tensile strength of polymer blends as prosthetic foot material reinforcement by carbon fiber. 4(2), 2169-0022.1000158
  5. ISO. (2016). 10328: 2006 Prosthetics. Structural testing of lower-limb prostheses. Requirements and test methods. In: British Standards Institution: London, UK
  6. Kementrian Sosial, I. (2021). Sistem Informasi Management Penyandang Disabilitas
  7. Khafidh, M., Marwa, P., Alfajr, B., Suryawan, D., Kistriyani, L., & Ismail, R. (2023). The mechanical properties of elastomeric materials in prosthetic feet: Comparison between local and imported products. Paper presented at the AIP Conference Proceedings
  8. Khafidh, M., Suryawan, D., Kistriyani, L., Naufal, M., & Ismail, R. J. P. (2023). Friction Optimization of Talc Powder-Reinforced Elastomers for Prosthetic Foot Application. 5(1), 88-99
  9. Kim, D. Y., Park, J. W., Lee, D. Y., & Seo, K. H. J. P. (2020). Correlation between the crosslink characteristics and mechanical properties of natural rubber compound via accelerators and reinforcement. 12(9), 2020
  10. Kistriyani, L., Khafidh, M., Suryawan, D., & Ismail, R. (2023). Physical characteristic of polymer formulations for prosthetic foot materials: Comparison of natural rubber and ethylene vinyl acetate. Paper presented at the AIP Conference Proceedings
  11. Lidstone, D. E., DeBerardinis, J., Dufek, J. S., & Trabia, M. B. (2019). Electronic measurement of plantar contact area during walking using an adaptive thresholding method for Medilogic® pressure-measuring insoles. The Foot, 39, 1-10
  12. Martijanti, M., Pratomo, A., & Juwono, A. L. (2020). Fabrication Process Optimization of Gombong (Gigantochloa pseudoarundinacea), Haur Hejo (Bambusa tuldoides) and Tali (Gigantochloa apus) Bamboo Fibers for Structural Application. Paper presented at the Key Engineering Materials
  13. Mitra, A. C., Jawarkar, M., Soni, T., & Kiranchand, G. J. P. E. (2016). Implementation of Taguchi method for robust suspension design. 144, 77-84
  14. Mohsin, I., He, K., Li, Z., Zhang, F., & Du, R. J. A. S. (2020). Optimization of the polishing efficiency and torque by using Taguchi method and ANOVA in robotic polishing. 10(3), 824
  15. Naufal, M. (2022). Optimasi Multi Faktor Pada Material Karet Silikon Terhadap Gesekan Dan Aus Menggunakan Metode Taguchi
  16. Pratama, W. (2021). Rancang Bangun Alat Uji Dorsiflexion Dan Hysteresis Telapak Kaki Palsu
  17. Suryawan, D., Ridlwan, M., & Setiadi, A. J. J. T. M. I. (2019). Inovasi desain dan simulasi model prostesis bawah lutut berdasarkan antropometri orang indonesia. 14(1), 30-36
  18. Wicaksono, A. A. (2021). Rancang Bangun Alat Uji Fatigue Telapak Kaki Palsu Berdasarkan Standar Iso 10328
  19. Williams, R. J., Hansen, A. H., & Gard, S. A. (2009). Prosthetic ankle-foot mechanism capable of automatic adaptation to the walking surface

Last update:

No citation recorded.

Last update: 2024-04-15 18:29:21

No citation recorded.