skip to main content

Optimal Operation of Micro-grids Considering the Uncertainties of Demand and Renewable Energy Resources Generation

Published: 4 Nov 2016.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2016 International Journal of Renewable Energy Development

Citation Format:
Abstract

Nowadays, due to technical and economic reasons, the distributed generation (DG) units are widely connected to the low and medium voltage network and created a new structure called micro-grid. Renewable energies (especially wind and solar) based DGs are one of the most important generations units among DG units. Because of stochastic behavior of these resources, the optimum and safe management and operation of micro-grids has become one of the research priorities for researchers. So, in this study, the optimal operation of a typical micro-grid is investigated in order to maximize the penetration of renewable energy sources with the lowest operation cost with respect to the limitations for the load supply and the distributed generation resources. The understudy micro-grid consists of diesel generator, battery, wind turbines and photovoltaic panels. The objective function comprises of fuel cost, start-up cost, spinning reserve cost, power purchasing cost from the upstream grid and the sales revenue of the power to the upstream grid. In this paper, the uncertainties of demand, wind speed and solar radiation are considered and the optimization will be made by using the GAMS software and mixed integer planning method (MIP).

Article History: Received May 21, 2016; Received in revised form July 11, 2016; Accepted October 15, 2016; Available online

How to Cite This Article: Jasemi, M.,  Adabi, F., Mozafari, B., and Salahi, S. (2016) Optimal Operation of Micro-grids Considering the Uncertainties of Demand and Renewable Energy Resources Generation, Int. Journal of Renewable Energy Development, 5(3),233-248.

http://dx.doi.org/10.14710/ijred.5.3.233-248

Fulltext View|Download
Keywords: Micro-grid, Optimal operation, Renewable energy resources, Uncertainty, DG

Article Metrics:

  1. Abedi S., Alimardani A., Gharehpetian G.B., Riahy G.H., Hosseinian S.H. (2012) A comprehensive method for optimal power management and design of hybrid RES-based autonomous energy systems. Renewable and Sustainable Energy Reviews, 16, 1577– 1587
  2. Alabedin A. Z. (2012) Generation Scheduling in Microgrids under Uncertainties in Power Generation, MAS Dissertation, University of Waterloo
  3. Alharbi, W., Raahemifar, K., (2015) Probabilistic coordination of microgrid energy resources operation considering uncertainties. Electric Power Systems Research, 128, 1–10
  4. Allali K., Azzag E., Labar H. (2015) Techno-economic Analysis of a Wind-Diesel Hybrid Power System in the South Algeria. International Journal of Renewable Energy Development, 4(2),137-142
  5. Bahramara S., Parsa Moghaddam M., Haghifam M.R. (2015) Modelling hierarchical decision making framework for operation of active distribution grids. IET Generation, Transmission & Distribution, 9(16), 2555-2564
  6. Baziar A.A, Kavousi-Fard A. (2013) Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices. Renewable Energy, 59,158-166
  7. Chen C., Duan S., Cai T., Liu B., Hu G. (2011) Smart energy management system for optimal microgrid economic operation. IET Renewable Power Generation, 5 (3), 258-267
  8. Chen Y. H., Lu S. Y., Chang Y. R., Lee T. T., Hu M. C., (2012) Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan. Applied Energy
  9. Dagdougui H., Minciardi R., Ouammi A., Robba M., Sacile R. (2012) Modeling and optimization of a hybrid system for the energy supply of a ‘‘Green’’ building. Energy Conversion and Management, 64, 351–363
  10. Dai, R., Mesbahi, M., (2013) Optimal power generation and load management for off-grid hybrid power systems with renewable sources via mixed-integer programming. Energy Conversion and Management, 73, 234–244
  11. Elsied, M., Oukaour, A., Gualous, H., Lo Brutto, O. A., (2016) Optimal economic and environment operation of micro-grid power systems. Energy Conversion and Management, 122, 182–194
  12. Hatziargyriou N., Asano H., Iravani R., Marnay C. (2007) Microgrids. IEEE Power and Energy Magazine, 5 (4), 78-94
  13. Kanchev H., Lu D., Colas F., Lazarov V., Francois B. (2011) Energy Management and Operational Planning of a Microgrid With a PV-Based Active Generator for Smart Grid Applications. IEEE Transactions on Industrial Electronics, 58 (10):4583-4592
  14. Lagorse J., Paire D., Miraoui A. (2010). A multi-agent system for energy management of distributed power sources. Renewable Energy, 35, 174–182,
  15. Logenthiran T., Srinivasan D. (2009) Short term generation scheduling of a Microgrid. TENCON 2009 - 2009 IEEE Region 10 Conference, pp.1-6
  16. Mohamed A., Mohammed O. (2013) Real-time energy management scheme for hybrid renewable energy systems in smart grid applications. Electric Power Systems Research, 96, 133– 143
  17. Motevasel M., Seifi A., Niknam T. (2012) Multi-objective energy management of CHP (combined heat and power) -based micro-grid. Energy, 1-14
  18. Niknam T., Golestaneh F., Malekpour A. (2012) Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational search algorithm. Energy, 43, 427-437
  19. Niknam, T., Azizipanah-Abarghooee, R., Narimani, M. R., (2012) An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation. Applied Energy, 99, 455–470
  20. Peik-Herfeh M., Seifi H., Sheikh-El-Eslami M.K. (2013) Decision making of a virtual power plant under uncertainties for bidding in a day-ahead market using point estimate method. Electrical Power and Energy Systems, 44, 88-98
  21. Salahi, S., and Bahramara, S. (2016) Modeling Operation Problem of Micro-grids Considering Economical, Technical and Environmental issues as Mixed-Integer Non-Linear Programming. International Journal of Renewable Energy Development, 5 (2),139-149

Last update:

  1. Future research tendencies for solar energy management using a bibliometric analysis, 2000–2019

    Thamyres Machado David, Paloma Maria Silva Rocha Rizol, Marcela Aparecida Guerreiro Machado, Gilberto Paschoal Buccieri. Heliyon, 6 (7), 2020. doi: 10.1016/j.heliyon.2020.e04452
  2. Investigation of the Impact of Large-Scale Wind Power and Solar Power Plants on a Vietnamese Transmission Network

    Ngo Minh Khoa, Nguyen Thi Hai Van, Le Kim Hung, Doan Anh Tuan. International Journal of Renewable Energy Development, 11 (3), 2022. doi: 10.14710/ijred.2022.43879
  3. Evaluating efficiency of renewable energy sources in planning micro-grids considering uncertainties

    Vu Van THANG, Nguyen Hien TRUNG. Journal of Energy Systems, 3 (1), 2019. doi: 10.30521/jes.507434
  4. Assembly of quinone-based renewable biobattery using redox molecules from Lawsonia inermis

    Halima Ali, Immaculata O. Onuigbo, Tosin E. Fabunmi, Muhammed Yahaya, Madu Joshua, Bolade Agboola, Wan Jin Jahng. SN Applied Sciences, 1 (6), 2019. doi: 10.1007/s42452-019-0577-2
  5. Technical and Economical Evaluation of Micro-Solar PV/Diesel Hybrid Generation System for Small Demand

    Tsutomu Dei, Nomuulin Batjargal. International Journal of Renewable Energy Development, 11 (4), 2022. doi: 10.14710/ijred.2022.46747

Last update: 2024-04-18 04:17:33

  1. Future research tendencies for solar energy management using a bibliometric analysis, 2000–2019

    Thamyres Machado David, Paloma Maria Silva Rocha Rizol, Marcela Aparecida Guerreiro Machado, Gilberto Paschoal Buccieri. Heliyon, 6 (7), 2020. doi: 10.1016/j.heliyon.2020.e04452
  2. Evaluating efficiency of renewable energy sources in planning micro-grids considering uncertainties

    Vu Van THANG, Nguyen Hien TRUNG. Journal of Energy Systems, 3 (1), 2019. doi: 10.30521/jes.507434
  3. Assembly of quinone-based renewable biobattery using redox molecules from Lawsonia inermis

    Halima Ali, Immaculata O. Onuigbo, Tosin E. Fabunmi, Muhammed Yahaya, Madu Joshua, Bolade Agboola, Wan Jin Jahng. SN Applied Sciences, 1 (6), 2019. doi: 10.1007/s42452-019-0577-2