skip to main content

Bioelectricity Production from Various Feedstocks Using Pure Strain of Bacillus firmus

1Department of Electronics and communication, University of Allahabad, Allahabad, India., India

2Department of Biotechnology , India

3Motilal Nehru National Institute of Technology , India

4 Allahabad, India, India

View all affiliations
Published: 15 Jul 2016.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2016 International Journal of Renewable Energy Development

Citation Format:
Abstract

Microbial fuel cells (MFCs) are bio-electrochemical devices that exploit microorganisms for producing electricity from a variety of materials, including complex organic waste and renewable biomass. In this study, the heterotrophic microbe, Bacillus firmus was used as the active bacterial component with synthetic waste waters for bio-electricity production. Three identical mediatorless and membraneless single chambered microbial fuel cells (MFCs) without catalyst was fabricated with different carbon source and operated in batch mode. The performance of these MFCs with glucose, hydrolyzed potato peel and hydrolyzed cyanobacterial biomass substrates were comparatively evaluated. Among these substrates hydrolyzed cyanobacterial biomass was found to be the favorable substrate for electricity production whereas potato peel was unable to construct a well-established MFC. The maximum power density of 16.46mW/m2 at 62.48mA/m2 was achieved using cyanobacterial mass as the substrate. A current density of 53.47mA/m2 appeared to characterize the maximum power produced from a polarization test was 5.85mW/m2 for glucose substrate.

 

Article History: Received February 25th 2016; Received in revised form April 18th 2016; Accepted May 19th 2016; Available online

How to Cite This Article: Singh, S.,  Pandey, A. and Dwivedi, C.K. (2016) Bioelectricity Production from Various Feedstocks Using Pure Strain of Bacillus firmus. Int. Journal of Renewable Energy Development, 5(2), 119-127.

http://dx.doi.org/10.14710/ijred.5.2.119-127

 

Fulltext View|Download
Keywords: microbial fuel cell, Bacillus firmus, single chamber, membrane-less, potato peel and cynobacterial biomass

Article Metrics:

  1. Abrevaya, X.C., Sacco, N.J., Bonetto, M.C. & Hilding-Ohlsson, A. (2015) Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand. Biosensors and Bioelectronics, 63, 580-590
  2. Aldrovandi, A., Marsili, E., Stante, L. & Paganin, P. (2009) Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell. Bioresource Technology, 100, 3252-3260
  3. Allen, R.M. & Bennetto, H.P. (1993) Microbial fuel-cells: electricity production from carbohydrates. Applied Biochemistry and Biotechnology, 39 (40), 27-40
  4. Behera, M., Jana, P.S., More, T.T. & Ghangrekar, M.M. (2010) Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH. Bioelectrochemistry, 79, 228-233
  5. Bond, D.R. & Lovley, D.R. (2003) Electricity Production by Geobacter sulfurreducens Attached to Electrodes. Applied and Environmental Microbiology, 69(3), 1548-1555
  6. Bubrick, P. (1991) Production of astaxanthin from Haematococcus. Bioresource Technology, 38, 237-246
  7. Choi, J. & Ahn, Y. (2014) Effect of hydrogen producing mixed culture on performance of microbial fuel cells. International journal o f hydrogen energy, 39, 9482-9489
  8. Djomo, S.N., Humbert, S. & Blumberga, D. (2008) Life cycle assessment of hydrogen produced from potato steam peels. International journal of hydrogen energy, 33, 3067-3072
  9. Gajda, I., Greenman, J., Melhuish, C. & Ieropoulos, I. (2015) Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass and Bioenergy, 82, 87-93
  10. Gunawardena, A., Fernando, S. & To, F. (2008) Performance of a Yeast-mediated Biological Fuel Cell. International Journal of Molecular Science, 9(10), 1893–1907
  11. Hernández-Fernández, F.J., Pérez de los Ríos, A., Salar-García, M.J. & Ortiz-Martínez, V.M. (2015) Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment. Fuel Processing Technology, 138, 284-297
  12. Herrero-Hernandez, E., Smith, T.J. & Akid, R. (2013) Electricity generation from wastewaters with starch a scarbon source using a mediatorless microbial fuel cell. Biosensors and Bioelectronics, 39, 164-198
  13. Jain, A., Zhang, X., Pastorella, G. & Connolly, J.O. (2012) Electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at graphite electrode. Bioelectrochemistry, 87, 28-32
  14. Jang, J.K., Pham, T.H., Chang, I.S. & Kang, K.H. (2004) Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochemistry, 39, 1007-1012
  15. Jia, Q., Wei, L., Han, H. & Shen, J. (2014) Factors that influence the performance of two-chamber microbial fuel cell. International journal of hydrogen energy, 39, 13687-13693
  16. Jones, C.S. & Mayfield, S.P. (2012) Algae biofuels: versatility for the future of bioenergy. Current Opinion in Biotechnology, 23, 346-351
  17. Kim, J.R., Min, B. & Logan, B.E. (2005) Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Biotechnological Products and Process Engineering, 68, 23-30
  18. Kim, M.S., Chang, J. & Kim, D.H. (2012) Enhancing factors of electricity generation in a microbial fuel cell using Geobacter sulfurreducens. Journal of Microbiology and Biotechnology, 22(10), 1395-400
  19. Kondaveeti, S., Choi, K.S., Kakarlr, R. & Min, B. (2014) Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs). Front. Environ. Sci. Eng., 8(5), 784-791
  20. Lakaniemi, A., Tuovinen, O.H. & Puhakka, J.A. (2012) Production of Electricity and Butanol from Microalgal Biomass in Microbial Fuel Cells. Bioenerg. Res., 5, 481-491
  21. Li, Y., Wu, Y.N., Puranik, S. & Lei, Y. (2014) Metals as electron acceptors in single-chamber microbial fuel cells. Journal of Power Sources, 269, 430-439
  22. Liu, H. & Logan, B.E. (2004) Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane. Environmental Science Technology, 38, 4040-4046
  23. Liu, Z. & Li, H. (2007) Effects of bio- and abio-factors on electricity production in a mediatorless microbial fuel cell. Biochemical Engineering Journal, 36, 209-214
  24. Logan, B.E. & Regan, J.M. (2006) Microbial Fuel cells —Challenges and Application. Environmental Science & Technology, 40, 5173-5180
  25. Logan, B.E., Hamelers, B., Rozendal, R. & Schrorder, U. (2006) Microbial Fuel Cells: Methodology and Technology. Environmental Science & Technology, 40, 5181-5192
  26. Lovley , D.R. (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Current Opinion in Biotechnology, 17, 327-332
  27. Lu, N., Zhou, S., Zhuang, L. & Zhang,J. (2009) Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochemical Engineering Journal, 43, 246-251
  28. Mars, A.E., Veuskens,T., Budde, M.A.W. & Doeveren, P.F.N.M.V.(2010) Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. International journal of hydrogen energy, 35, 7730-7737
  29. Milner, J., Davies, M. & Wilkinson, P. (2012) Urban energy, carbon management (low carbon cities) and co-benefits for human health. Current Opinion in Environmental Sustainability, 4, 398-404
  30. Mohan, S.V., Raghavulu, S.V. & Sarma, P.N. (2008) Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia. Biosensors and Bioelectronics, 24, 41-47
  31. Moon, H., Chang, I.S., Kim, B.H. (2006) Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresource Technology, 97, 621-627
  32. Moqsud, M.A., Omine, K., Yasufuku, N. & Hyodo, M. (2013) Microbial fuel cell (MFC) for bioelectricity generation from organic wastes. Waste Management, 33, 2465-2469
  33. Nimje, V.R., Chen, C., Chen, C.C. & Jean,J.S. (2009) Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell. Journal of Power Sources, 190, 258-263
  34. Nimje, V.R., Chen, C., Chen, H. & Chen, C. (2012) Comparative bioelectricity production from various wastewaters in microbial fuel cells using mixed cultures and a pure strain of Shewanella oneidensis. Bioresource Technology, 104, 315-323
  35. Park,D.H. & Zeikus, J.G. (2000) Electricity Generation in Microbial Fuel Cells Using Neutral Red as an Electronophore. Applied and Environmental Microbiology, 66(4), 1292-1297
  36. Parmar, A., Singh, N.K., Pandey, A. & Gnansounou, E. (2011) Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresource Technology, 102, 10163–10172
  37. Poddar, S. & Khurana, S. (2011) Geobacter: The Electric Microbe! Efficient Microbial Fuel Cells to Generate Clean, Cheap Electricity. Indian Journal of Microbiology, 51(2), 240-241
  38. Rashid, N., Cui, Y., Rehman, M.S.U. & Han, J. (2013)Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Science of the Total Environment, 456-457, 91-94
  39. Rossi, R., Fedrigucci, A. & Setti, L. (2015)Characterization of electron mediated microbial fuel cell by Saccharomyces Cerevisiae. Chemical Engineering Transactions, 43, 337-342
  40. Santoro , C., Agrios, A., Pasaogullari, U. & Li, B. (2011) Effects of gas diffusion layer (GDL) and micro porous layer (MPL) on cathode performance in microbial fuel cells (MFCs). International journal of hydrogen energy, 36, 13096-13104
  41. Santoro, C., Lei, Y., Li, B. & Cristiani, P. (2012) Power generation from wastewater using single chamber microbial fuel cells (MFCs) with platinum-free cathodes and pre-colonized anodes. Biochemical Engineering Journal, 62, 8-16
  42. Scott, K. & Murano, C. (2007) Microbial fuel cells utilising carbohydrates. Journal of Chemical Technology and Biotechnology, 82, 92-100
  43. Shukla, A.K., Suresh, P., Berchmans, S. & Rajendran, A. (2004) Biological fuel cells and their applications. Current Science, 87(4), 455-468
  44. Sinha, P. & Pandey, A. (2014) Biohydrogen production from various feedstocks by Bacillus firmus NMBL-03. International journal of hydrogen energy, 39, 7518-7525
  45. Strik, D.P.B.T.B., Terlouw, H., Hamelers, H.V.M. & Buisman, C. J.N. (2008) Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Biotechnological Products and Process Engineering, 81, 659-668
  46. Velasquez-Orta, S.B., Curtis, T.P. & Logan, B.E. (2009) Energy From Algae Using Microbial Fuel Cells. Biotechnology and Bioengineering, 103, 1068-1076
  47. Velasquez-Orta, S.B., Head, I.M., Curtis,T.P. & Scott, K. (2011) Factors affecting current production in microbial fuel cells using different industrial wastewaters. Bioresource Technology, 102, 5105-5112
  48. Watson, V.J. & Logan, B.E. (2010) Power Production in MFCs Inoculated With Shewanella oneidensis MR-1 or Mixed Cultures. Biotechnology and Bioengineering, 105, 489-498
  49. Winfield, J., Ieropoulos, I., Greenman, J. & Dennis, J. (2011) The overshoot phenomenon as a function of internal resistance in microbial fuel cells. Bioelectrochemistry, 81, 22-27
  50. Yang, S., Du, F. & Liu, H. (2012) Characterization of mixed-culture biofilms established in microbial fuel cells. Biomass and Bioenergy, 46, 531-537
  51. Yavari, Z., Izanloo, H., Naddafi, K. & Tashauoei, H.R. (2013) Performance of Microbial Fuel Cell for Wastewater Treatment and Electricity Generation. International Journal of Renewable Energy Development, 2(2), 131-135
  52. Yuan, Y., Chen, Q., Zhou, S. & Zhuang, L. (2011) Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell. Journal of Hazardous Materials, 187, 591-595
  53. Zain, S.M., Roslani, N.S., Hashim, R. & Basri, N.E.A. (2011) Microbial Fuel Cells using Mixed Cultures of Wastewater for Electricity Generation. Sains Malaysiana, 40(9), 993-997
  54. Zhang, J., Zhang, E., Scott, K. & Burgess, J.G. (2012) Enhanced Electricity Production by Use of Reconstituted Artificial Consortia of Estuarine Bacteria Grown as Biofilms. Environmental Science & Technology, 46, 2984-2992
  55. Zhu, F., Wang, W., Zhang, X. & Tao, G. (2011) Electricity generation in a membrane-less microbial fuel cell with down-flow feeding onto the cathode. Bioresource Technology, 102, 7324-7328

Last update:

  1. Bioelectrochemical Systems

    Fabio Flagiello, Edvige Gambino, Rosa Anna Nastro, Chandrasekhar Kuppam. 2020. doi: 10.1007/978-981-15-6868-8_9
  2. MFC-mediated wastewater treatment technology and bioelectricity generation: Future perspectives with SDGs 7 & 13

    Richa Kothari, Atin Kumar Pathak, Har Mohan Singh, Kajol Goria, Zaheer Ud Din Sheikh, Anu Bharti, Shubham Raina, Rachna, Anita Singh, Bhaskar Singh, Veeramuthu Ashok Kumar, Ashok Pandey, A.K. Pandey, Deepak Pathania, V.V. Tyagi. Process Safety and Environmental Protection, 192 , 2024. doi: 10.1016/j.psep.2024.08.078
  3. Mitigation of tannery effluent with simultaneous generation of bioenergy using dual chambered microbial fuel cell

    Shraddha Chauhan, Vikas Sharma, Sunita Varjani, Raveendran Sindhu, Preeti Chaturvedi Bhargava. Bioresource Technology, 351 , 2022. doi: 10.1016/j.biortech.2022.127084

Last update: 2025-01-21 14:38:20

No citation recorded.