Developing A Family-Size Biogas-Fueled Electricity Generating System


The purpose of this study is to develop a family-size biogas-fueled electricity generating system consisting of anaerobic digester, bio-filter scrubber, and power generating engine. Biogas was produced from a pilot scale wet anaerobic digester (5-m3 capacity). The biogas was filtered using bio-scrubber column filled with locally made compost to reduce hydrogen sulfide (H2S) content. Biogas composition was analysed using a gas chromatograph and its H2S level was measured using a H2S detector. A 750-W four stroke power generating engine was used with 100% biogas. Biogas consumed by the generator engine was measured at different load from 100 to 700 W (13.3 to 93.3% of the rated power). Three replications for each load experiment were taken. Results showed that the total biogas yield was 1.91 m3/day with methane content of 56.48% by volume. Bio-filter successfully reduced H2S content in the biogas by 98% (from 400 ppm to 9 ppm). Generator engine showed good performance during the test with average biogas consumption of 415.3 L/h. Specific biogas consumption decreased from 5.05 L/Wh to 1.15 L/Wh at loads of 100 W to 700 W, respectively. Thermal efficiency increased with loads from 6.4% at 100 W to 28.1 at 700 W. The highest thermal efficiency of 30% was achieved at a load of 600 W (80% of the rated power) with specific biogas consumption of 1.07 L/Wh.
Article History: Received Janury 16th 2017; Received in revised form 2nd June 2017; Accepted 18th June 2017; Available online
How to Cite This Article: Haryanto, A., Marotin, F., Triyono, S., Hasanudin, U. (2017), Developing A Family-Size Biogas-Fueled Electricity Generating System. International Journal of Renewable Energy Development, 6(2), 111-118.
https://doi.org/10.14710/ijred.6.2.111-118
Article Metrics:
- Abatzoglou, N. (2009) A review of biogas purification processes. Biofuels, Bioproduct, Biorefinery, 3, 42–71
- Abraham, E.R., Ramachandran, S., Ramalingam, V. (2007) Biogas: Can it be an important source of energy? Environmental Science and Pollution Research, 14(1), 67-71
- Ayade, M. and Latey, A.A. (2016) Performance and emission characteristics of biogas–petrol dual fuel in SI engine. International Journal of Mechanical Engineering and Technology, 7(2), 45-54
- BIRU (Biogas Rumah). (2015) Annual Report Indonesia Domestic Biogas Programme January – December 2014
- Capocelli, M. and de Falco, M. (2016) Enriched methane: A ready solution for the transition towards the hydrogen economy. In Enriched Methane: The First Step Towards the Hydrogen Economy (Editors: M. de Falco and A. Basile). Springer International Publishing, Switzerland, 1–21
- Chandra, R., Takeuchi, H., Hasegawa, T. (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renewable Sustainable Energy Review, 16, 1462-1476
- Cherosky, P.B. (2012) Anaerobic digestion of yard waste and biogas purification by removal of hydrogen sulfide. Master Thesis. Graduate Program in Food, Agricultural and Biological Engineering, Ohio State University
- Chynoweth, D.P., Owens, J.M., Legrand, R. (2001) Renewable methane from anaerobic digestion of biomass. Renewable Energy, 22(3), 1-8
- Collins, M.D. and Widdel, F. (1986). Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: A systematic investigation. Systematic and Applied Microbiology, 8, 8-18
- Directorate General of Electricity, (2016) Statistik Ketegalistrikan 2015 (2015 Electricity Statistic). Ministry of Energy and Mineral Resources: 26
- Ehsan, M. and Naznin, N. (2005) Performance of a biogas run petrol engine for small scale power generation. Journal of Energy & Environment, 4, 1-9
- Feng, Y., Guo, Y., Gaihe, Y., Qin, X., Song, Z. (2012) Household biogas development in rural China: On policy support and other macro conditions. Renewable Sustainable Energy Review, 16, 5617-5624
- Haryanto, A., Cahyani, D., Triyono, S., Murdapa, F., and Haryono, D. Economic benefit and greenhouse gas emission reduction potential of a family-scale cowdung anaerobic biogas digester. International Journal of Renewable Energy Development, 6(1), 29-36
- Hasanudin, U., Fujita, M., Fujie, K., Koibuchi, Y. (2005) Dynamic changes in environment condition and microbial community structure in trench and flat seabed sediments of Tokyo bay, Japan. Journal of Water Science and Technology, 52(9), 107-114
- Hasanudin, U., Fujita, M., Kunihiro, T., Fujie, K., Suzuki, T. (2004) The effect of clams (Tapes philippinarum) on changes in microbial community structure in tidal flat sediment mesocosms, based on quinone profiles. Journal of Ecological Engineering, 22(3), 185-196
- Himabindu, M. and Ravikhrisna, R.V. (2014) Performance assessment of a small biogas-fueled power generator prototype. Journal of Scientific and Industrial Research, 73, 781-785
- Hiraishi, A. (1999) Isoprenoid quinones as biomarkers of microbial populations in the environment. Journal of Bioscience and Bioengineering, 88(5), 449-460
- Horikawa, M.S., Rossi, F., Gimenes, M.L., Costa, C.M.M., da Silva, M.G.C. (2004) Chemical absorption of H2S for biogas purification. Brazilian Journal of Chemical Engineering, 21(03), 415 – 422
- Jawurek, H.H., Lane, N.W., Rallis, C.J. (1987) Biogas/petrol dual fuelling of SI engine for rural third world use. Biomass, 13(2), 87-103
- Kabir, H., Yegbemey, R.N., Bauer, S. (2013) Factors determinant of biogas adoption in Bangladesh. Renewable Sustainable Energy Review, 28, 881-889
- Kobayashi, T., Li, Y-Y., Kubota, K., Harada, H., Maeda, T., Yu, H-Q. (2012) Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization. Applied Microbiology and Biotechnology, 93, 847–857
- Kuever, J., Rainey, F.A. Widdel, F. Genus I. (2005) Desulfuromonas Pfennig and Biebl 1977, 306AL. In Bergey’s Manual of Systematic Bacteriology. Vol. Two: The Proteobacteria. Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. (Editors: D.J. Brenner, N.R. Krieg, J.T. Staley). Springer Science+Business Media, Inc., 233 Spring Street, New York: 1005-1010
- McKinsey-Zicari, S. (2003) Removal of hydrogen sulphyde using cow manure compost. Master Thesis. Department of Biological and Environmental Engineering, Cornel University
- Mitianiec, W. (2012) Factors determining ignition and efficient combustion in modern engines operating on gaseous fuels. Internal Combustion Engines (Lejda, K. and Woś, P., editors). InTech, Janeza Trdine 9, 51000 Rijeka, Croatia: 3-34
- Power in Indonesia. (2015) Investment and taxation guide. 3rd edition. Available from www.pwc.com/id (January 11, 2016)
- PLN. (2015) Electricity Tariff Adjustment of December 2015. www.pln.co.id/wp-content/uploads/2015/11/TA-Desember-2015.pdf (January 11, 2016)
- Reddy, K.S., Aravindhan, S., Mallick, T.K. (2016) Investigation of performance and emission characteristics of a biogas fueled electric generator integrated with solar concentrated photovoltaic system. Renewable Energy, 92, 233-243
- Robertson, L.A. and Kuenen, J.G. (2006) The Genus Thiobacillus. In The Prokaryotes: A Handbook on the Biology of Bacteria. Vol. 5: Proteobacteria: Alpha and Beta Subclasses (Editors: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, E. Stackebrandt). Springer Science+Business Media, Inc., 233 Spring Street, New York. Third Edition: 812-827
- Scheftelowitz, M. and Thrän, D., 2016. Unlocking the energy potential of manure – An assessment of the biogas production potential at the farm level in Germany. Agriculture, 6, 1-20
- Schmidt, T. S. and Dabur, S. (2014) Explaining the diffusion of biogas in India: a new functional approach considering national borders and technology transfer. Environmental Economics and Policy Studies, 16, 171-199
- Su, J-J., Chang, Y-C., Chen, Y-J., Chang, K-C., Lee, S-Y. (2013) Hydrogen sulfide removal from livestock biogas by a farm-scale bio-filter desulfurization system. Water Science and Technology, 67(6), 1288-1293
- Surata, I.W., Nindhia, T.G.T., Atmika, I.K.A., Negara, D.N.K.P., Putra, I.W.E.P. (2014) Simple conversion method from gasoline to biogas fueled small engine to powered electric generator. Energy Procedia, 52, 626-632
- Tippayawong, N., Promwungkwa, A., Rerkkriangkrai, P. (2010) Durability of a small agricultural engine on biogas/diesel dual fuel operation. Iranian Journal of Science and Technology, Transactions B, 34(B2), 167-177
- Vaghmashi, J.D., Shah, D.R., Gosai, D.C. (2014) An experimental study of petrol engine using compressed biogas as a fuel. International Journal for Scientific Research & Development, 2(04), 2321-0613
- Widdel, F. and Bak, F. (1992) Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, Vol. 4. (Editors: A. Balows, H.G. Triiper, M. Dworkin, W. Harder, and K.-H. Schleifer). 2nd ed. Springer Science+Business Media, Inc., 233 Spring Street, New York: 3370
Last update: 2021-04-23 08:59:47
-
Biogas production from co-digestion of cocoa pod husk and cow manure with cow rumen fluid as inoculum
H. Hermansyah, F. F. Fedrizal, A. Wijanarko, M. Sahlan, T. S. Utami, R. Arbianti. INTERNATIONAL CONFERENCE ON TRENDS IN MATERIAL SCIENCE AND INVENTIVE MATERIALS: ICTMIM 2020, 127 , 2020. doi: 10.1063/5.0017383 -
Solid State Anaerobic Digestion for Biogas Production from Rice Husk
E3S Web of Conferences, 127 , 2020. doi: 10.1051/e3sconf/202020208005 -
Rice husk as renewable energy for biogas production from biomass: prospect and challenges
E3S Web of Conferences, 127 , 2020. doi: 10.1051/e3sconf/202020206024 -
A strategy development for optimal generating power of small wind-diesel-solar hybrid microgrid system
Van Huong Dong, Xuan Phuong Nguyen. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), 2020. doi: 10.1109/ICACCS48705.2020.9074324 -
Effect of load on the performance of a family scale biogas-fuelled electricity generator
IOP Conference Series: Earth and Environmental Science, 127 , 2019. doi: 10.1088/1755-1315/355/1/012078 -
A study on a solution to reduce emissions by using hydrogen as an alternative fuel for a diesel engine integrated exhaust gas recirculation
Anh Tuan Hoang, Van Viet Pham. INTERNATIONAL CONFERENCE ON EMERGING APPLICATIONS IN MATERIAL SCIENCE AND TECHNOLOGY: ICEAMST 2020, 127 , 2020. doi: 10.1063/5.0007492
Last update: 2021-04-23 08:59:47
-
Biogas production from co-digestion of cocoa pod husk and cow manure with cow rumen fluid as inoculum
H. Hermansyah, F. F. Fedrizal, A. Wijanarko, M. Sahlan, T. S. Utami, R. Arbianti. INTERNATIONAL CONFERENCE ON TRENDS IN MATERIAL SCIENCE AND INVENTIVE MATERIALS: ICTMIM 2020, 127 , 2020. doi: 10.1063/5.0017383 -
Solid State Anaerobic Digestion for Biogas Production from Rice Husk
E3S Web of Conferences, 127 , 2020. doi: 10.1051/e3sconf/202020208005 -
Improving the quantity and quality of biogas production in tehran anaerobic digestion power plant by application of materials recirculation technique
Naghavi R.. International Journal of Renewable Energy Development, 9 (2), 2020. doi: 10.14710/ijred.9.2.167-175 -
Rice husk as renewable energy for biogas production from biomass: prospect and challenges
E3S Web of Conferences, 127 , 2020. doi: 10.1051/e3sconf/202020206024 -
Performance investigation of a gasifier and gas engine system operated on municipal solid waste briquettes
Homdoung N.. International Journal of Renewable Energy Development, 8 (2), 2019. doi: 10.14710/ijred.8.2.179-184 -
A strategy development for optimal generating power of small wind-diesel-solar hybrid microgrid system
Van Huong Dong, Xuan Phuong Nguyen. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), 2020. doi: 10.1109/ICACCS48705.2020.9074324 -
Effect of load on the performance of a family scale biogas-fuelled electricity generator
IOP Conference Series: Earth and Environmental Science, 127 , 2019. doi: 10.1088/1755-1315/355/1/012078

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.