Enhancing the Phenolic Content of Bio-Oil by Acid Pre-Treatment of Biomass

Nurgül Özbay  -  Department of Chemical and Process Engineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
*Elif Yaman  -  Central Research Laboratory, Bilecik Şeyh Edebali University, Bilecik, Turkey
Published: 10 Jul 2018.
Open Access Copyright (c) 2018 International Journal of Renewable Energy Development

Citation Format:
Article Info
Section: Original Research Article
Language: EN
Statistics: 2418 582

Pyrolysis of lignocellulosic biomass with acidic pre-treatment to produce valuable bio-chemicals has been carried out in an integrated pyrolysis-gas chromatograph/mass spectrometry system. Three different waste biomasses (fir wood sawdust, pine wood sawdust and nutshell) were subjected to acidic solution to specify the acid pre-treatment effect on biomass chemical structure, thermal degradation profile and pyrolysis products. Post acid pre-treatments, the changes in the biomasses and thermal degradation profile were studied through proximate, structure and ultimate analysis and thermogravimetric. The pre-treatment significantly reduced the inorganic, cellulose and hemicellulose content in biomass samples. According to the pyrolysis experiment results, acid pre-treatment provided the increasing of the amount of phenolic in the degradation products at 10 min pyrolysis time. All the results would assist further understanding of thermal decomposition and thermo-chemical application for bio-fuels and bio-chemicals of fir wood sawdust, pine wood sawdust and nutshell.

Article History: Received January 15th 2018; Received in revised form May 24th 2018; Accepted 7th June 2018; Available online

How to Cite This Article: Ozbay, N. and Yaman, E (2018) Enhancing the Phenolic Content of Bio-Oil by Acid Pre-Treatment of Biomass. Int. Journal of Renewable Energy Development, 7(2), 163-169.


Keywords: Pyrolysis, lignocellulosic biomass, acid pre-treatment, renewable chemicals, fir wood sawdust, pine wood sawdust, nutshell

Article Metrics:

  1. Aboulkas, A., Nadifiyine, M., Benchanaa, M., & Mokhlisse, A. (2009). Pyrolysis kinetics of olive residue/plastic mixtures by non-isothermal thermogravimetry. Fuel Processing Technology, 90(5), 722-728.
  2. Açıkalın, K. (2011). Thermogravimetric analysis of walnut shell as pyrolysis feedstock. Journal of thermal analysis and calorimetry, 105(1), 145-150.
  3. Asadieraghi, M., & Daud, W. M. A. W. (2014). Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: effects of demineralization by diverse acid solutions. Energy Conversion and Management, 82, 71-82.
  4. Bridgewater, A. V. (2004). Biomass fast pyrolysis. Thermal science, 8(2), 21-50.
  5. Chen, Z., & Wan, C. (2017). Ultrafast Fractionation of Lignocellulosic Biomass by Microwave-assisted Deep Eutectic Solvent Pretreatment. Bioresource technology.
  6. Chi, Z., Rover, M., Jun, E., Deaton, M., Johnston, P., Brown, R. C., ... & Jarboe, L. R. (2013). Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresource technology, 150, 220-227.
  7. Das, O., & Sarmah, A. K. (2015). Value added liquid products from waste biomass pyrolysis using pretreatments. Science of the Total Environment, 538, 145-151.
  8. David, G. F., Perez, V. H., Justo, O. R., & Garcia-Perez, M. (2017). Effect of acid additives on sugarcane bagasse pyrolysis: Production of high yields of sugars. Bioresource technology, 223, 74-83.
  9. Đurić, S. N., Brankov, S. D., Kosanić, T. R., Ćeranić, M. B., & Nakomčić-Smaragdakis, B. B. (2014). The composition of gaseous products from corn stalk pyrolysis process. Thermal Science, 18(2), 533-542.
  10. Gu, X., Ma, X., Li, L., Liu, C., Cheng, K., & Li, Z. (2013). Pyrolysis of poplar wood sawdust by TG-FTIR and Py–GC/MS. Journal of Analytical and Applied Pyrolysis, 102, 16-23.
  11. Gvero, P. M., Papuga, S., Mujanic, I., & Vaskovic, S. (2016). Pyrolysis as a key process in biomass combustion and thermochemical conversion. Thermal Science, (00), 154-154.
  12. Harker, J. H., & Backhurst, J. R. (1981). Fuel and energy. London and New York, Academic Press, 1981. 373 p.
  13. Jeon, M. J., Jeon, J. K., Suh, D. J., Park, S. H., Sa, Y. J., Joo, S. H., & Park, Y. K. (2013). Catalytic pyrolysis of biomass components over mesoporous catalysts using Py-GC/MS. Catalysis Today, 204, 170-178.
  14. Layton, D. S., Ajjarapu, A., Choi, D. W., & Jarboe, L. R. (2011). Engineering ethanologenic Escherichia coli for levoglucosan utilization. Bioresource technology, 102(17), 8318-8322.
  15. Li, S., Xu, S., Liu, S., Yang, C., & Lu, Q. (2004). Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Processing Technology, 85(8), 1201-1211.
  16. Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H. V., Auer, M., ... & Singh, S. (2010). Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresource technology, 101(13), 4900-4906.
  17. Lian, J., Chen, S., Zhou, S., Wang, Z., O’Fallon, J., Li, C. Z., & Garcia-Perez, M. (2010). Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids. Bioresource technology, 101(24), 9688-9699.
  18. Lian, J., Garcia-Perez, M., & Chen, S. (2013). Fermentation of levoglucosan with oleaginous yeasts for lipid production. Bioresource technology, 133, 183-189.
  19. Mourant, D., Wang, Z., He, M., Wang, X. S., Garcia-Perez, M., Ling, K., & Li, C. Z. (2011). Mallee wood fast pyrolysis: effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil. Fuel, 90(9), 2915-2922.
  20. Oudenhoven, S. R. G., Westerhof, R. J. M., & Kersten, S. R. A. (2015). Fast pyrolysis of organic acid leached wood, straw, hay and bagasse: Improved oil and sugar yields. Journal of analytical and applied pyrolysis, 116, 253-262.
  21. Oudenhoven, S. R. G., van der Ham, A. G. J., van den Berg, H., Westerhof, R. J. M., & Kersten, S. R. A. (2016). Using pyrolytic acid leaching as a pretreatment step in a biomass fast pyrolysis plant: Process design and economic evaluation. Biomass and Bioenergy, 95, 388-404.
  22. Patwardhan, P. R., Satrio, J. A., Brown, R. C., & Shanks, B. H. (2010). Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresource technology, 101(12), 4646-4655.
  23. Pecha, B., Arauzo, P., & Garcia-Perez, M. (2015). Impact of combined acid washing and acid impregnation on the pyrolysis of Douglas fir wood. Journal of Analytical and Applied Pyrolysis, 114, 127-137.
  24. Persson, H., Kantarelis, E., Evangelopoulos, P., & Yang, W. (2017). Wood-derived acid leaching of biomass for enhanced production of sugars and sugar derivatives during pyrolysis: Influence of acidity and treatment time. Journal of Analytical and Applied Pyrolysis, 127, 329-334.
  25. Raveendran, K., Ganesh, A., & Khilar, K. C. (1995). Influence of mineral matter on biomass pyrolysis characteristics. Fuel, 74(12), 1812-1822.
  26. Sim, S. F., Mohamed, M., Lu, N. A. L. M. I., Sarman, N. S. P., & Samsudin, S. N. S. (2012). Computer-assisted analysis of fourier transform infrared (FTIR) spectra for characterization of various treated and untreated agriculture biomass. Bioresources, 7(4), 5367-5380.
  27. Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International journal of molecular sciences, 9(9), 1621-1651.
  28. Qiang, L., Wen-Zhi, L., Dong, Z., & Xi-Feng, Z. (2009). Analytical pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) of sawdust with Al/SBA-15 catalysts. Journal of Analytical and Applied Pyrolysis, 84(2), 131-138.
  29. Williams, P. T., & Horne, P. A. (1994). The role of metal salts in the pyrolysis of biomass. Renewable Energy, 4(1), 1-13.
  30. Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy conversion and management, 45(5), 651-671.
  31. Zhuang, X. L., Zhang, H. X., Yang, J. Z., & Qi, H. Y. (2001). Preparation of levoglucosan by pyrolysis of cellulose and its citric acid fermentation. Bioresource Technology, 79(1), 63-66.

No citation recorded.