skip to main content

Enhancing the Phenolic Content of Bio-Oil by Acid Pre-Treatment of Biomass

1Department of Chemical and Process Engineering, Bilecik Şeyh Edebali University, Bilecik, Turkey

2Central Research Laboratory, Bilecik Şeyh Edebali University, Bilecik, Turkey

Published: 10 Jul 2018.
Editor(s): H Hadiyanto

Citation Format:
Abstract

Pyrolysis of lignocellulosic biomass with acidic pre-treatment to produce valuable bio-chemicals has been carried out in an integrated pyrolysis-gas chromatograph/mass spectrometry system. Three different waste biomasses (fir wood sawdust, pine wood sawdust and nutshell) were subjected to acidic solution to specify the acid pre-treatment effect on biomass chemical structure, thermal degradation profile and pyrolysis products. Post acid pre-treatments, the changes in the biomasses and thermal degradation profile were studied through proximate, structure and ultimate analysis and thermogravimetric. The pre-treatment significantly reduced the inorganic, cellulose and hemicellulose content in biomass samples. According to the pyrolysis experiment results, acid pre-treatment provided the increasing of the amount of phenolic in the degradation products at 10 min pyrolysis time. All the results would assist further understanding of thermal decomposition and thermo-chemical application for bio-fuels and bio-chemicals of fir wood sawdust, pine wood sawdust and nutshell.

Article History: Received January 15th 2018; Received in revised form May 24th 2018; Accepted 7th June 2018; Available online

How to Cite This Article: Ozbay, N. and Yaman, E (2018) Enhancing the Phenolic Content of Bio-Oil by Acid Pre-Treatment of Biomass. Int. Journal of Renewable Energy Development, 7(2), 163-169.

https://doi.org/10.14710/ijred.7.2.163-169

Fulltext View|Download
Keywords: Pyrolysis, lignocellulosic biomass, acid pre-treatment, renewable chemicals, fir wood sawdust, pine wood sawdust, nutshell

Article Metrics:

  1. Aboulkas, A., Nadifiyine, M., Benchanaa, M., & Mokhlisse, A. (2009). Pyrolysis kinetics of olive residue/plastic mixtures by non-isothermal thermogravimetry. Fuel Processing Technology, 90(5), 722-728
  2. Açıkalın, K. (2011). Thermogravimetric analysis of walnut shell as pyrolysis feedstock. Journal of thermal analysis and calorimetry, 105(1), 145-150
  3. Asadieraghi, M., & Daud, W. M. A. W. (2014). Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: effects of demineralization by diverse acid solutions. Energy Conversion and Management, 82, 71-82
  4. Bridgewater, A. V. (2004). Biomass fast pyrolysis. Thermal science, 8(2), 21-50
  5. Chen, Z., & Wan, C. (2017). Ultrafast Fractionation of Lignocellulosic Biomass by Microwave-assisted Deep Eutectic Solvent Pretreatment. Bioresource technology
  6. Chi, Z., Rover, M., Jun, E., Deaton, M., Johnston, P., Brown, R. C., ... & Jarboe, L. R. (2013). Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresource technology, 150, 220-227
  7. Das, O., & Sarmah, A. K. (2015). Value added liquid products from waste biomass pyrolysis using pretreatments. Science of the Total Environment, 538, 145-151
  8. David, G. F., Perez, V. H., Justo, O. R., & Garcia-Perez, M. (2017). Effect of acid additives on sugarcane bagasse pyrolysis: Production of high yields of sugars. Bioresource technology, 223, 74-83
  9. Đurić, S. N., Brankov, S. D., Kosanić, T. R., Ćeranić, M. B., & Nakomčić-Smaragdakis, B. B. (2014). The composition of gaseous products from corn stalk pyrolysis process. Thermal Science, 18(2), 533-542
  10. Gu, X., Ma, X., Li, L., Liu, C., Cheng, K., & Li, Z. (2013). Pyrolysis of poplar wood sawdust by TG-FTIR and Py–GC/MS. Journal of Analytical and Applied Pyrolysis, 102, 16-23
  11. Gvero, P. M., Papuga, S., Mujanic, I., & Vaskovic, S. (2016). Pyrolysis as a key process in biomass combustion and thermochemical conversion. Thermal Science, (00), 154-154
  12. Harker, J. H., & Backhurst, J. R. (1981). Fuel and energy. London and New York, Academic Press, 1981. 373 p
  13. Jeon, M. J., Jeon, J. K., Suh, D. J., Park, S. H., Sa, Y. J., Joo, S. H., & Park, Y. K. (2013). Catalytic pyrolysis of biomass components over mesoporous catalysts using Py-GC/MS. Catalysis Today, 204, 170-178
  14. Layton, D. S., Ajjarapu, A., Choi, D. W., & Jarboe, L. R. (2011). Engineering ethanologenic Escherichia coli for levoglucosan utilization. Bioresource technology, 102(17), 8318-8322
  15. Li, S., Xu, S., Liu, S., Yang, C., & Lu, Q. (2004). Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Processing Technology, 85(8), 1201-1211
  16. Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H. V., Auer, M., ... & Singh, S. (2010). Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresource technology, 101(13), 4900-4906
  17. Lian, J., Chen, S., Zhou, S., Wang, Z., O’Fallon, J., Li, C. Z., & Garcia-Perez, M. (2010). Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids. Bioresource technology, 101(24), 9688-9699
  18. Lian, J., Garcia-Perez, M., & Chen, S. (2013). Fermentation of levoglucosan with oleaginous yeasts for lipid production. Bioresource technology, 133, 183-189
  19. Mourant, D., Wang, Z., He, M., Wang, X. S., Garcia-Perez, M., Ling, K., & Li, C. Z. (2011). Mallee wood fast pyrolysis: effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil. Fuel, 90(9), 2915-2922
  20. Oudenhoven, S. R. G., Westerhof, R. J. M., & Kersten, S. R. A. (2015). Fast pyrolysis of organic acid leached wood, straw, hay and bagasse: Improved oil and sugar yields. Journal of analytical and applied pyrolysis, 116, 253-262
  21. Oudenhoven, S. R. G., van der Ham, A. G. J., van den Berg, H., Westerhof, R. J. M., & Kersten, S. R. A. (2016). Using pyrolytic acid leaching as a pretreatment step in a biomass fast pyrolysis plant: Process design and economic evaluation. Biomass and Bioenergy, 95, 388-404
  22. Patwardhan, P. R., Satrio, J. A., Brown, R. C., & Shanks, B. H. (2010). Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresource technology, 101(12), 4646-4655
  23. Pecha, B., Arauzo, P., & Garcia-Perez, M. (2015). Impact of combined acid washing and acid impregnation on the pyrolysis of Douglas fir wood. Journal of Analytical and Applied Pyrolysis, 114, 127-137
  24. Persson, H., Kantarelis, E., Evangelopoulos, P., & Yang, W. (2017). Wood-derived acid leaching of biomass for enhanced production of sugars and sugar derivatives during pyrolysis: Influence of acidity and treatment time. Journal of Analytical and Applied Pyrolysis, 127, 329-334
  25. Raveendran, K., Ganesh, A., & Khilar, K. C. (1995). Influence of mineral matter on biomass pyrolysis characteristics. Fuel, 74(12), 1812-1822
  26. Sim, S. F., Mohamed, M., Lu, N. A. L. M. I., Sarman, N. S. P., & Samsudin, S. N. S. (2012). Computer-assisted analysis of fourier transform infrared (FTIR) spectra for characterization of various treated and untreated agriculture biomass. Bioresources, 7(4), 5367-5380
  27. Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International journal of molecular sciences, 9(9), 1621-1651
  28. Qiang, L., Wen-Zhi, L., Dong, Z., & Xi-Feng, Z. (2009). Analytical pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) of sawdust with Al/SBA-15 catalysts. Journal of Analytical and Applied Pyrolysis, 84(2), 131-138
  29. Williams, P. T., & Horne, P. A. (1994). The role of metal salts in the pyrolysis of biomass. Renewable Energy, 4(1), 1-13
  30. Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy conversion and management, 45(5), 651-671
  31. Zhuang, X. L., Zhang, H. X., Yang, J. Z., & Qi, H. Y. (2001). Preparation of levoglucosan by pyrolysis of cellulose and its citric acid fermentation. Bioresource Technology, 79(1), 63-66

Last update:

  1. Image texture analysis of pellets made of lignocellulosic materials

    Magdalena Dąbrowska, Tomasz Kozieł, Monika Janaszek-Mańkowska, Aleksander Lisowski. Renewable Energy, 235 , 2024. doi: 10.1016/j.renene.2024.121320
  2. Response surface optimization of extraction of rutin and quercetin from Cyclobalanopsis leaves by hydrothermal treatment catalyzed by ethanol-acetic acid

    Chensi Guo, Xiangyu Gao, Xiaoling Zhao, Bo Zhang, Junying Chen, Chun Chang, Zhiyong Chen. Biomass Conversion and Biorefinery, 13 (13), 2023. doi: 10.1007/s13399-021-02116-2

Last update: 2024-12-25 20:33:47

No citation recorded.