skip to main content

The influence of microbial community dynamics on anaerobic digestion efficiency and stability: A Review

Department of Biology, University of York, United Kingdom

Received: 14 Sep 2019; Revised: 12 Dec 2019; Accepted: 16 Jan 2020; Available online: 15 Feb 2020; Published: 18 Feb 2020.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2020 International Journal of Renewable Energy Development under http://creativecommons.org/licenses/by/4.0.

Citation Format:
Abstract
An essential component in sustainable energy development is the production of bioenergy from waste. The most successful bioenergy technology worldwide is anaerobic digestion (AD), which is a microbially-mediated process of organic feedstock conversion into energy-rich compounds (volatile fatty acids (VFA) and biogas) for renewable energy generation. AD is deployed in a range of situations including systems for on-farm energy recovery from animal and plant waste to the processing of food and municipal solid waste (with the additional benefit of land-fill reduction).Anaerobic digesters rely on a diverse microbial community working syntrophycally through a series of interrelated biochemical processes.Each stage in anaerobic digestion is carried out by different microbial groups. Thus, to optimise energy recovery from the AD process, the microbial community must have stable performance over time, balancing the various metabolic functions and taxonomic community composition in digesters. Complicating this balance, it has been found that the presence of ammonia, sulphate, and hydrogen sulphide in substantial concentrations often cause failure in the AD process. Thus, these substances cause adverse shifts in microbial community composition and/or inhibit bacterial growth, that influencing AD performance.  ©2020. CBIORE-IJRED. All rights reserved
Fulltext View|Download
Keywords: Biogas; Methane; Sustainable Energy; Anaerobic Digestion; Microbial community

Article Metrics:

  1. Abram, J.W., and Nedwell, D.B. (1978) Inhibition of methanogenesis by sulphate-reducing bacteria competing for transferred hydrogen. Arch. Microbiol. 117, 89-92. https://doi.org/10.1007/BF00689356
  2. Achinas, S., Achinas, V., dan Euverink, G.J.W. (2017) A technological overview of biogas production from biowaste. Engineering. 3, 299-307. https://doi.org/10.1016/J.ENG.2017.03.002
  3. Allison, S.D. and Martiny, J.B.H. (2008) Resistance, resilience, and redundancy in microbial communities. PNAS. 105, 11512-11519. https://doi.org/10.1073/pnas.0801925105
  4. Amani, T., Nosrati, M. & Sreekrishnan, T.R. (2010) Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects — a review. Environ. Rev. 18, 255–278. doi: 10.1139/A10-011
  5. Amekan, Y. and Guntoro (2017) Bioethanol production using alginate from Sargassum binderi as an immobilization matrix for Saccharomyces cerevisiae D.01 cells in a batch reactor with circulation. Research Journal of Pharmaceutical, Biological and Chemical Science. 8(2), 1925-1933 http://scholar.google.com/scholar?cluster=12602939996050425961&hl=en&oi=scholarr
  6. Amekan, Y., Wangi, D.S.A.P., Cahyanto, M.N., Sarto and Widada, J., (2018), Effect of Different Inoculum Combination on Biohydrogen Production from Melon Fruit Waste. Int. Journal of Renewable Energy Development, 7(2), 101-109, doi.org/10.14710/ijred.7.2.101-109
  7. Angelidaki, I., Ahring, B.K., (1993) Thermophilic digestion of livestock waste: the effect of ammonia. Appl. Microbiol. Biotechnol. 38, 560–564. https://doi.org/10.1007/BF00242955
  8. Balk, M., Weijma, J. and Stams, A.J.M. (2002) Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int J Syst Evol Microbiol. 52, 1361-1368. https://doi.org/10.1099/00207713-52-4-1361
  9. Banat, I.M., Lindstrom, E.B., Nedwell, D.B. and Balba M.T. (1981) Evidence for Coexistence of Two Distinct Functional Groups of Sulfate-Reducing Bacteria in Salt Marsh Sediment. Applied and Environmental Microbiology. 42(6): 985-992. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC244143/
  10. Bengelsdorf FR, Gerischer U, Langer S, Zak M, Kazda M. (203) Stability of a biogas-producing bacterial, archaeal and fungal community degrading food residues. FEMS Microbiol Ecol. 84,201–212. doi: 10.1111/1574-6941.12055
  11. Barredo, M.S., Evison, L.M. (1991) Effect of propionate toxicity on methanogen- enriched sludge, Methanobrevibacter smithii, and Methanospirillum hungatii at different pH values. Appl Environ Microbiol 57, 1764-1769. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC183465/
  12. Bharathiraja, B., Sudharsana, T., Jayamuthunagai, J., Praveenkumar, R., Chozhavendhan, S., dan Iyyappan, J. (2018) Biogas production – A review on composition, fuel properties, feedstock and principles of anaerobic digestion. Renewable and Sustainable Energy Reviews. 90, 570-582 https://doi.org/10.1016/j.rser.2018.03.093
  13. Biswas, K.C., Woodards, N.A., Xu, H. and Barton, L.L. (2009) Reduction of molybdate by sulfate-reducing bacteria. Biometals. 22, 131-139. https://doi.org/10.1007/s10534-008-9198-8
  14. Bocher, B.T.W., Cherukuri, K., Maki, J.S. and Zitomer, D.H. (2015) Relating methanogen community structure and anaerobic digester function. Water Research. 70, 425-435. https://doi.org/10.1016/j.watres.2014.12.018
  15. Bond, T., & Templeton, M.R. (2011) History and future of domestic biogas plants in the developing world. Energy Sustain. Dev. 15, 347–354. https://doi.org/10.1016/j.esd.2011.09.003
  16. Boon, F. (1994) Influence of pH, High volatile fatty acids concentrations and partial hydrogen pressure on hydrolysis. MSc Thesis, Wageningen, The Netherlands
  17. Boone, D.R. (1985) Fermentation reactions of anaerobic digestion. In PN Cheremisinoff and RP Oullette (edn), Biotechnology: applications and research. Technomic Publishing Co., Lancaster, PA. pp. 41-51
  18. Borja, R., Sanche´z, E., Weiland, P., (1996) Influence of ammonia concentration on thermophilic anaerobic digestion of cattle manure in upflow anaerobic sludge blanket (UASB) reactors. Process Biochem. 31 (5), 477–483. https://doi.org/10.1016/0032-9592(95)00099-2
  19. BPS-Statistics Indonesia (2019) Statistical Yearbook of Indonesia 2019. National Report, BPS-Statistics Indonesia, Jakarta
  20. Briones, A. and Raskin, L. (2003) Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr Opin Biotechnol. 14(3), 270-276. https://www.ncbi.nlm.nih.gov/pubmed/12849779
  21. Bryant, M.E., Wolin, E.A., Wolin, M.J. and Wolfe, R.S., (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Mikrobiol. 59, 20-31. https://doi.org/10.1007/BF00406313
  22. Calusinska, M., Goux, X., Fossepre, M., Muller, E.E.L., Wilmes, P. & Delfosse, P. (2018) A year of monitoring 20 mesophilic full-scale bioreactors reveals the existence of stable but different core microbiomes in bio-waste and wastewater anaerobic digestion systems. Biotechnology for Biofuels. 11(196), 1-19. https://doi.org/10.1186/s13068-018-1195-8
  23. Camiloti, P.R., Mockaitis, G., Rodrigues, J.A.D., Damianovic, M.H.R.Z., Foresti, E., Zaiat, M. (2014) Innovative anaerobic bioreactor with fixed-structured bed (ABFSB) for simultaneous sulfate reduction and organic matter removal. J. Chem. Technol. Biotechnol. 89, 1044-1050. https://doi.org/10.1002/jctb.4199
  24. Chaiprapat, S., Preechalertmit, P., Boonsawang, P., Karnchanawong, S. (2011) Sulfidogenesis in pretreatment of high-sulfate acidic wastewater using anaerobic sequencing batch reactor and upflow anaerobic sludge blanket reactor. Environ. Eng. Sci. 28, 597–604. https://doi.org/10.1089/ees.2010.0492
  25. Chen, Y., Cheng, J.J., and Creamer, K.S. (2008) Inhibition of anaerobic digestion process: A review. Bioresource Technology. 99(10), 4044-4064. https://doi.org/10.1016/j.biortech.2007.01.057
  26. Chen, X., Liu, Y., Peng, L., Yuan, Z., & Ni, B. J. (2016). Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor. Scientific reports, 6, 25114. doi: 10.1038/srep25114
  27. Cirne, D.G., Lehtomäki, A., Björnsson, L. and Blackhall, L.L. (2007) Hydrolysis and microbial community analysis in two-stage anaerobic digestion of energy crops. J Appl Microbiol. 103: 516-527. https://doi.org/10.1111/j.1365-2672.2006.03270.x
  28. Costa, K.C. and Leigh, J.A. (2014) Metabolic versatility in methanogens. Curr Opin Biotechnol. 29,70-75 https://doi.org/10.1016/j.copbio.2014.02.012
  29. de Baere, L.A., Devocht, M., van Assche, P., Verstraete, W. (1984) Influence of high NaCl and NH4Cl salt levels on methanogenic associations. Water Res. 18, 543–548. https://doi.org/10.1016/0043-1354(84)90201-X
  30. de Bok, F.A., Stams, A.J., Dijkema, C. and Boone, D.R. (2001) Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl Environ Microbiol 67,1800-1804. DOI: 10.1128/AEM.67.4.1800-1804.2001
  31. de Bok, F.A.M., Harmsen, H.J.M., Plugge, C.M., de Vries, M.C., Akkermans, A.D.L., de Vos, W.M., and Stams, A.J.M. (2005) The first true obligately syntrophic propionate oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. International Journal of Systematic and Evolutionary Microbiology 55, 1697-1703. https://doi.org/10.1099/ijs.0.02880-0
  32. de Jonge, N., Moset, V., Møller, H.B., Nielsen, J.L. (2017) Microbial population dynamics in continuous anaerobic digester systems during start up, stable conditions and recovery after starvation. Bioresour.Technol. 232, 313–320. doi: 10.1016/j.biortech.2017.02.036
  33. Demirel, B. and Yenigün, O. (2002) The effects of change in volatile fatty acid (VFA) composition on methanogenic upflow filter reactor (UFAF) performance. Environ Technol 23: 1179-1187. https://doi.org/10.1080/09593332308618336
  34. De Vrieze, J., Saunders, A.M., Hey, Y., Fang, J., Nielsen, P.H., Verstraete, W., and Boon, N. (2015) Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Res. 75, 312-323. https://doi.org/10.1016/j.watres.2015.02.025
  35. De Vrieze, J., Christiaens, M.E.R., Walraedt, D., Devooght, A., Ijaz, U.Z., and Boon, N. (2017) Microbial community redundancy in anaerobic digestion drives process recovery after salinity exposure. Water Research 11, 109-117. https://doi.org/10.1016/j.watres.2016.12.042
  36. De Vrieze, J., Pinto, A.J., Sloan, W.T., and Ijaz, U.Z. (2018) The active microbial community more accurately reflects the anaerobic digestion process: 16s rRNA (gene) sequencing as a predictive tool. Microbiome. 6,63 https://doi.org/10.1186/s40168-018-0449-9
  37. Diaz, A.I., Oulego, P., Collado, S., Laca, A., Gonzalez, J.M. & Diaz, M. (2018) Impact of anaerobic digestion and centrifugation/decanting process in bacterial communities fractions. Journal of Bioscience and Bioengineering. 126(6), 742-749. https://doi.org/10.1016/j.jbiosc.2018.05.024
  38. Dokulilova, T., Koutny, T., and Vitez, T. (2018) Effect of zinc and copper on anaerobic stabilization of sewage sludge. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 66(2), 357-363. https://doi.org/10.11118/actaun201866020357
  39. Dollhopf, S., Hashsham, S., Dazzo, F., Hickey, R., Criddle, C. and Tiedje, J. (2001) The impact of fermentative organisms on carbon flow in methanogenic systems under constant low-substrate conditions. Appl Microbiol Biotechnol. 56: 531. https://doi.org/10.1007/s002530100612
  40. Dong, X., Xin, Y., Jian, W., Liu, X. and Ling, D. (2000). Bifidobacterium thermacidophilum sp. nov., isolated from an anaerobic digester. Int J Syst Evol Microbiol 50, 119-125. https://doi.org/10.1099/00207713-50-1-119
  41. EBTKE (2016) Statistik EBTKE 2016. National Report, Directorate General of New, Renewable Energy and Energy Conservation, Jakarta
  42. Fernandez, A., Sanchez, A. and Font, X. (2005) Anaerobic co-digestion of a simulated organic fraction of municipal solid wastes and fats of animal and vegetable origin. Biochemical Engineering Journal. 26(1), 22-28. https://doi.org/10.1016/j.bej.2005.02.018
  43. Ferry, J.G. (2002) Methanogenesis biochemistry. Encyclopedia of Life Sciences. 1-9 https://onlinelibrary.wiley.com/doi/10.1038/npg.els.0000573
  44. Fournier, G.P. and Gogarten, J.P. (2008) Evolution of acetoclastic methanogenesis in Methanosarcina via horizontal gene transfer from cellulolytic Clostridia. Journal of Bacteriology. 190(3), 1124-1127. https://doi.org/10.1128/JB.01382-07
  45. Francisci, D. D., Kougias, P. G., Treu, L., Campanaro, S., and Angelidaki, I. (2015) Microbial diversity and dynamicity of biogas reactors due to radical changes of feedstock composition. Bioresource Technology. 176, 56-64. https://doi.org/10.1016/j.biortech.2014.10.126
  46. Franke-Whittle, I.H., Walter, A., Ebner, C. and Insam, H. (2014) Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Management. 34(11), 2080-2089. https://doi.org/10.1016/j.wasman.2014.07.020
  47. Gallert, C., Bauer, S., Winter, J. (1998) Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population. Appl. Microbiol. Biotechnol. 50, 495–501. https://www.ncbi.nlm.nih.gov/pubmed/9830101
  48. Gerardi, M.H. (2003) The microbiology of anaerobic digesters. John Wiley & Sons, Inc. DOI: 10.1002/0471468967
  49. Greene E. A., Hubert C., Nemati M., Jenneman G. E., Voordouw G. (2003). Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environ. Microbiol. 5, 607–617. 10.1046/j.1462-2920.2003.00446.x
  50. Guneratnam, A.J., Ahern, E., FitzGerald, J.A., Jackson, S.A., Xia, A., Dobson, A.D.W., Murphy, J.D., (2017). Study of the performance of a thermophilic biological methanation system. Bioresour. Technol. 225, 308–315. http://dx.doi.org/10.1016/j.biortech.2016.11.066
  51. Hardegen, J., Latorre-Perez, A., Vilanova, C., Gunther, T., Simeonov, C., Porcar, M., LuLuschnig, O., Abendroth, C., (2018) Liquid co-substrates repower sewage microbiomes. Biorxiv. doi: http://dx.doi.org/10.1101/261339
  52. Hassa, J., Maus, I., Off, S., Puhler, A., Scherer, P., Klocke, M., and Schluter, A. (2018) Metagenome, metatranscriptome, and metaproteome approaches unravelled compositions and functional relationships of microbial communities residing in biogas plants. Appl. Microbiol. Biotechnol. 102(12), 5045-5063. https://doi.org/10.1007/s00253-018-8976-7
  53. Heeg, K., Pohl, M., Sontag, M., Mumme, M., Klocke, M. & Nettmann E. (2014) Microbial communities involved in biogas production from wheat straw as the sole substrate within a two-phase solid-state anaerobic digestion. Systematic and Applied Microbiology. 37(8), 590-600. https://doi.org/10.1016/j.syapm.2014.10.002
  54. Henderson, P.J.F. (1971) Ion Transport by energy-conserving Biological Membranes. Annual Review of Microbiology. 25, 393-428. https://doi.org/10.1146/annurev.mi.25.100171.002141
  55. Hilton, M.G., and Archer, D.B. (1988) Anaerobic digestion of a sulfate-rich molasses wastewater: inhibition of hydrogen sulphide production. Biotechnology and Bioengineering 31, 885-888. https://doi.org/10.1002/bit.260310817
  56. Hulsen T., Barry, E.M., Lu, Y., Puyol, D. and Batstone, D.J. (2016) Low temperature treatment of domestic wastewater by purple phototrophic bacteria: Performance, activity, and community. Water Research. 100, 537-545. https://doi.org/10.1016/j.watres.2016.05.054
  57. Hulshoff Pol, L.W., Lens, P.N.L., Stams, A.J.M., and Lettinga, G., (1998) Anaerobic treatment of sulphate-rich wastewaters. Biodegradation. 9, 213–224. https://doi.org/10.1023/A:1008307929134
  58. Imachi, H., Sakai, S., Ohashi, A., Harada, H., Hanada, S., Kamagata, Y. and Sekiguchi, Y. (2007) Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionate-oxidizing bacterium. Int J Syst Evol Microbiol 57, 1487-1492. https://doi.org/10.1099/ijs.0.64925-0
  59. Insam, H., Franke-Whittle, I., and Goberna, M. (2010) Microbes at Work: from waste to resources. Springer-Verlag Berlin Heidelberg
  60. Isa, M.H. and Anderson, G.K. (2005) Molybdate inhibition of sulphate reduction in two-phase anaerobic digestion. Process Biochemistry. 40(6), 2079-2089. https://doi.org/10.1016/j.procbio.2004.07.025
  61. Jackson, B.E., Bhupathiraju, V.K., Tanner, R.S., Woese, C.R. and McInerney, M.J. (1999) Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol 171, 107-114. https://doi.org/10.1007/s002030050685
  62. Jarrell, K.F., Saulnier, M., Ley, A., (1987) Inhibition of methanogenesis in pure cultures by ammonia, fatty acids, and heavy metals, and protection against heavy metal toxicity by sewage sludge. Can. J. Microbiol. 33, 551–555. https://doi.org/10.1139/m87-093
  63. Kim, M.S., Kim, D.H., Yun, Y.M. (2017) Effect of operation temperature on anaerobic digestion of food waste: performance and microbial analysis. Fuel. 209, 598-605. https://doi.org/10.1016/j.fuel.2017.08.033
  64. Kirkegaard, R.H., McIlroy, S.J., Kristensen, J.M., Nierychlo, M., Karst, S.M., Duelhom, M.S., Albertsen, M., and Nielsen, P.H., (2017) The impact of immigration on microbial community composition in full-scale anaerobic digesters. Scientific Reports 7, 9343. https://doi.org/10.1038/s41598-017-09303-0
  65. Koster, I.W., Lettinga, G., (1988) Anaerobic digestion at extreme ammonia concentrations. Biol. Wastes 25, 51–59. https://doi.org/10.1016/0269-7483(88)90127-9
  66. Kroeker, E.J., Schulte, D.D., Sparling, A.B., Lapp, H.M. (1979) Anaerobic treatment process stability. J. Water Pollut. Control Fed. 51, 718– 727. https://www.jstor.org/stable/25039893
  67. Langer, S.G., Ahmed, S., Einfalt, D., Bangelsdorf, F.R., and Kazda, M. (2015) Functionally redundant but dissimilar microbial communities within biogas reactors treating maize silage in co-fermentation with sugar beet silage. Microb Biotechnol. 8(5), 828-836. https://doi.org/10.1111/1751-7915.12308
  68. Lens, P.N.L., Visser, A., Janssen, A.J.H., Hulshoff Pol, L.W., Letingga, G. (1998) Biotechnological treatment of sulfate-rich wastewaters. Crit. Rev. Env. Sci. Tec. 28 (1), 41-88. https://doi.org/10.1080/10643389891254160
  69. Li, J., Rui, J., Yao, M., Zhang, S., Yan, X., Wang, Y., Yan, Z., Li, X. (2015) Substrate Type and Free Ammonia Determine Bacterial Community Structure in Full-Scale Mesophilic Anaerobic Digesters Treating Cattle or Swine Manure. Frontiers in microbiology, 6, 1337. doi: 10.3389/fmicb.2015.01337
  70. Liebl, W. (2001) Cellulolytic enzymes from Thermotoga species. Methods Enzymol. 330: 290-300. https://doi.org/10.1016/S0076-6879(01)30383-X
  71. Liu, Y., Balkwill, D.L., Aldrich, H.C., Drake, G.R. and Boone, D.R. (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Syst Bacteriol 49, 545-556. https://www.ncbi.nlm.nih.gov/pubmed/10319475
  72. Liu, T., Sung, S., (2002) Ammonia inhibition on thermophilic aceticlastic methanogens. Water Sci. Technol. 45, 113–120. https://www.ncbi.nlm.nih.gov/pubmed/12188530
  73. Liu, Y., Beer, L.L., and Whitman, W.B. (2012) Methanogens: a window into ancient sulphur metabolism. Trends in Microbiology. 20(5), 251-258 https://doi.org/10.1016/j.tim.2012.02.002
  74. Louca, S., Hawley, A.K., Katsev, S., Torres-Beltran, M., Bhatia, M.P., Kheirandish, S., Michiels, C.C., Capelle, D., Lavik, G., Doebeli, M., Crowe, S.A. and Hallam, S.J. (2016) Integrating biogeochemistry with multiomic sequence information in a model oxygen minimum zone. Proc. Natl Acad. Sci. USA 113, E5925–E5933. https://doi.org/10.1073/pnas.1602897113
  75. Louca, S., Polz, M.F., Mazel, F., Albright, M.B.N., Huber, J.A., O’connor, M.I., Ackermann, M., Hahn, A.S., Srivastava, D.S., Crowe, S.A., Doebeli, M., and Parfrey, L.W. (2018) Function and functional redundancy in microbial systems. Nature Ecology & Evolution 2, 936-943. https://doi.org/10.1038/s41559-018-0519-1
  76. Lowe, S.E., Jain, M.K. and Zeikus, J.G. (1993) Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol Rev 57, 451-509. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC372919/
  77. McCarty, P.L., 1964. Anaerobic waste treatment fundamentals. Public Works 95 (9), 107–112
  78. McCarty, P.L. and Smith, D.P. (1986) Anaerobic wastewater treatment. Environ Sci Technol 20: 1200-1206. https://doi.org/10.1021/es00154a002
  79. Mesa, M. M., M. Macías and D. Cantero. (2002) Biological iron oxidation by Acidithiobacillus ferrooxidans in packed-bed bioreactor. Chemical and Biochemical Engineering Quarterly 16(2): 69-73. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.320.5576&rep=rep1&type=pdf
  80. Moestedt, J., Paledal, S.N. and Schnurer, A. (2013). The effect of substrate and operational parameters on the abundance of sulphate-reducing bacteria in industrial anaerobic biogas digesters. Bioresource Technology. 132, 327-332. http://dx.doi.org/10.1016/j.biortech.2013.01.043
  81. Montañés, R., Pérez, M., Solera, R. (2014) Anaerobic mesophilic co-digestion of sewage sludge and sugar beet pulp lixiviation in batch reactors: effect of pH control. Chem Eng J 255:492–499. https://doi.org/10.1016/j.cej.2014.06.074
  82. Nathia-Neves, G., Berni, M., Dragone, G., Mussatto, S.I. & Forster-Carneiro, T. (2018) Anaerobic digestion process: technological aspects and recent developments. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-018-1682-2
  83. Nedwell, D.B., and Banat, I.M. (1981) Hydrogen as an Electron donor for sulfate-reducing bacteria in slurries of salt marsh sediment. Microb. Ecol. 7, 305-313. https://doi.org/10.1007/BF02341425
  84. Nelson, M.C., Morrison, M. and Yu, Z. (2011) A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresour Technol. 102(4), 3730-3739. https://doi.org/10.1016/j.biortech.2010.11.119
  85. Nemati, M., Mazutinec, T.J., Jenneman, G.E. and Voordouw, G. (2001) Control of biogenic H2S production with nitrite and molybdate. Journal of Industrial Microbiology and Biotechnology. 26(6), 350-355 https://doi.org/10.1038/sj.jim.7000142
  86. Nielsen, H.B., Uellendahla, H. and Ahring, B.K., 2007. Regulation and optimization of the biogas process: propionate as a key parameter. Biomass and Bioenergy 31, 820-830. https://doi.org/10.1016/j.biombioe.2007.04.004
  87. Nisimura, S. and Yoda, M. (1997) Removal of hydrogen sulphide from an anaerobic biogas using a bio-scrubber. Water Science and Technology. 36(6-7), 349-356. https://doi.org/10.1016/S0273-1223(97)00542-8
  88. Oremland, R. S., and Taylor, B. F. (1978) Sulfate reduction and methanogenesis in marine sediments. Geoehim, Cosmochim. 42, 209-214. https://doi.org/10.1016/0016-7037(78)90133-3
  89. O`Sullivan, C.A., Burrell, P.C., Clarke, W.P. dan Blackall, L.L. (2005) Structure of a cellulose degrading bacterial community during anaerobic digestion. Biotechnol Bioeng. 92: 871-878. https://doi.org/10.1002/bit.20669
  90. Patidar, S.K. and Tare, V. (2005) Effect of molybdate on methanogenic and sulphidogenic activity biomass. Bioresour Technol. 96(11)1215-1222. https://doi.org/10.1016/j.biortech.2004.11.001
  91. Peck, H. D. (1959) The ATP-dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfuricans. Proc. Nat. Acad. Sci, U.S.A. 45, 701-708. https://dx.doi.org/10.1073%2Fpnas.45.5.701
  92. Peck, H.D. (1961) Enzymatic basis for assimilatory and dissimilatory sulfate reduction. J. Bacteriol. 82,933-939. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC279279/
  93. Plugge, C.M., 2017. Biogas. Microbial Biotechnology 10(5), 1128-1130. https://doi.org/10.1111/1751-7915.12854
  94. Pullammanappallil, P.C., Svoronos, S.A., Chynoweth, D.P. and Lyberatos, G. (1998) Expert system for control of anaerobic digesters. Biotech Bioeng 58: 13-22. https://www.ncbi.nlm.nih.gov/pubmed/10099257
  95. Predicala, B., Nemati, M., Stade, S. and Lague, C. (2008) Control of H2S emission from swine manure using Na-nitrite and Na-molybdate. J Hazard Mater. 154(1-3):300-309. https://doi.org/10.1016/j.jhazmat.2007.10.026
  96. Procházka, J.; Dolejs, P.; Maca, J.; Dohanyos, M. (2012) Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Applied Microbiology Biotechnology 93: 439-47 https://doi.org/10.1007/s00253-011-3625-4
  97. Rademacher, A., Zakrzewski, M., Schluter, A, Schonberg, M., Szczepanowski R., Goesmann, A., Puhler, A. and Klocke, M. (2012) Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing. FEMS Microbiology Ecology. 79(3), 785-799. https://doi.org/10.1111/j.1574-6941.2011.01265.x
  98. Rajagopal, R., Massé, D.I., Singh, G. (2013) A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour. Technol. 143, 632–641. https://doi.org/10.1016/j.biortech.2013.06.030
  99. Ranade, D.R., Dighe, A.S., Bhirangi, S.S., Panhalkar, V.S. and Yeole, T.Y. (1999). Evaluation of the use of sodium molybdate to inhibit sulphate reduction during anaerobic digestion of distillery waste. Bioresource Technology. 68(3):287-291. https://doi.org/10.1016/S0960-8524(98)00149-7
  100. Ravishanker, P. and Hills, D. (1984) Hydrogen sulphide removal from anaerobic digester gas. Agricultural Wates. 11(3), 167-179. https://doi.org/10.1016/0141-4607(84)90043-X
  101. Regueiro, L., Carballa, M., Lema, J.M. (2014) Outlining microbial community dynamics during temperature drop and subsequent recovery period in anaerobic co-digestion systems. J. Biotechnol. 192, 179–186. doi: 10.1016/j.jbiotec.2014.10.007
  102. Rivett, D.W. and Bell, T. (2018) Abundance determines the functional role of bacterial phylotypes in complex communities. Nature Microbiology. 3, 767-772 https://doi.org/10.1038/s41564-018-018-0
  103. Riviere, D., Desvignes, V., Pelletier, E., Chaussonnerie, S., Guermazi, S., Weissenbach, J., Li, T., Camacho, P., and Sghir, A. (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J. 3(6), 700-714. https://doi.org/10.1038/ismej.2009.2
  104. Schink, B. (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61(2), 262-280. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC232610/
  105. Schnurer, A., Zellner, G., and Svensson, B.H. (1999) Mesophilic syntrophic acetate oxidation during methane formation in biogas reactor. FEMS Microbiol. Ecol. 29, 249-261. https://doi.org/10.1016/S0168-6496(99)00016-1
  106. Siles, J.A., Brekelmans, J., Martin, M.A., Chica, A.F., and Martin, A. (2010) Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion. Bioresour. Technol. 101(23),9040-9048. https://doi.org/10.1016/j.biortech.2010.06.163
  107. Sorensen, J., Christensen, D. Jorgensen, B.B. (1981) Volatile Fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Appl Environ Microbiol. 42(1):5-11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC243952/
  108. Sousa, D.Z., Smidt, H., Alves, M.M. and Stams, A.J. (2007) Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum. Int J Syst Evol Microbiol 57, 609-615. https://doi.org/10.1099/ijs.0.64734-0
  109. Sousa, D. Z., Salvador, A. F., Ramos, J., Guedes, A. P., Barbosa, S., Stams, A. J., … Pereira, M. A. (2013) Activity and viability of methanogens in anaerobic digestion of unsaturated and saturated long-chain fatty acids. Applied and environmental microbiology, 79(14), 4239–4245. doi: 10.1128/AEM.00035-13
  110. Smith, R.L., and Klug, M.J. (1981) Electron donors utilized by sulfate-reducing bacteria in eutrophic lake sediments. Appl Environ Microbiol. 42(1): 116-121 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC243972/
  111. Speece, R.E., Boonyakitsombut, S., Kim, M., Azbar, N. dan Ursillo, P. (2006) Overview of anaerobic treatment: thermophilic and propionate implications. Water Environ Res 78: 460-473. https://doi.org/10.2175/106143006X95492
  112. Stams, A.J. and Plugge, C.M. (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7: 568-577. https://doi.org/10.1038/nrmicro2166
  113. Stiles, M.E. and Holzapfel, W.H. (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol. 36: 1-29. https://doi.org/10.1016/s0168-1605(96)01233-0
  114. Sträuber, H., Schröder, M. and Kleinsteuber, S. (2012) Metabolic and microbial community dynamics during the hydrolytic and acidogenic fermentation in a leach-bed process. Energ Sustain Soc. 2: 13. https://doi.org/10.1186/2192-0567-2-13
  115. Sung, S., Liu, T., (2003) Ammonia inhibition on thermophilic digestion. Chemosphere 53, 43–52. https://doi.org/10.1016/S0045-6535(03)00434-X
  116. Talbot, G., Topp, E., Palin, M.F., and Massé, D. (2008) Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water research. 42, 513-537. https://doi.org/10.1016/j.watres.2007.08.003
  117. Tanaka, S. and Lee, Y. (1997) control of sulfate reduction by molybdate in anaerobic digestion. Water science and technology. 36(12):143-150. https://doi.org/10.1016/S0273-1223(97)00714-2
  118. Thauer, R.K., Kaster, A.K., Seedorf, H., Buckel, W., and Hedderich, R., 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6(8), 579-591. https://doi.org/10.1038/nrmicro1931
  119. Van Lier, J.B. (1995) Thermophilic anaerobic wastewater treatment: temperature aspects and process stability. PhD Thesis. Wageningen Agricultural University, Wageningen, The Netherlands. https://library.wur.nl/WebQuery/wda/abstract/915507
  120. Vanwonterghem, I., Jensen, P.D., Ho, D.P., Bastone, D.J., and Tyson, G.W. (2014) Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr. Opin. Biotechnol. 27, 55-64 doi: 10.1016/j.copbio.2013.11.004
  121. Vilela, R.S., Damianovic, M.H.R.Z., Foresti, E. (2014) Removing organic matter from sulfate0rich wastewater via sulfidogenic and methanogenic pathways. Water Sci. Technol. 69, 848-853. https://doi.org/10.2166/wst.2014.066
  122. Visser, A., Alphenaar, P.A., Gao, Y., van Rossum, G., and Lettinga, G. (1993) Granulation and immobilisation of methanogenic and sulfate-reducing bacteria in high-rate anaerobic reactors. Appl Microbiol Biotechnol 40, 575. https://doi.org/10.1007/BF00175750
  123. Welte, C. and Deppenmeier, U. (2014) Bioenergetics and anaerobic respiratory chains of acetoclastic methanogens. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1837(7), 1130-1147. https://doi.org/10.1016/j.bbabio.2013.12.002
  124. Werner, J.J., Knights, D., Garcia, M.L., Scalfone, N.B., Smith, S., Yarasheski, K., Cummings, T.A., Beers,A.R., Knight, R., and Angenent, L.T. (2011) Bacterial community structures are unique and resilient in full-scale bioenergy systems. PNAS 108(10), 4158-4163. https://doi.org/10.1073/pnas.1015676108
  125. Westermann, P. and Ahring, B.K. (1987) dynamics of methane production, sulfate reduction and denitrification in a permanently waterlogged alder swamp. Applied and Environmental Microbiology. 53(10): 2554-2559. https://aem.asm.org/content/53/10/2554
  126. Whittmann, C., Zeng, A.P., Deckwer, W.D. (1995) Growth inhibition by ammonia and use of pH controlled feeding strategy for the effective cultivation of Mycobacterium chlorophenolicum. Appl. Microbiol. Biotechnol. 44, 519–525. https://doi.org/10.1007/BF00169954
  127. Wilins, D., Rao, S., Lu, X., and Lee, P.K.H. (2015). Effects of sludge inoculum and organic feedstock on active microbial communities and methane yield during anaerobic digestion. Front Microbiol. 6, 1114. https://dx.doi.org/10.3389%2Ffmicb.2015.01114
  128. Wirth, R., Kovacs, E., Maroti, G., Bagi, Z., Rakhely, G., & Kovacs, K.L. (2012) Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnology for Biofuels 5, 41 https://doi.org/10.1186/1754-6834-5-41
  129. Yamada, T., Sekiguchi, Y., Hanada, S., Imachi, H., Ohashi, A., Harada, H. and Kamagata, Y. (2006) Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. And Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 56, 1331-1340. https://doi.org/10.1099/ijs.0.64169-0
  130. Yu, Z., and Mohan, W.W. (2001) Bacterial diversity and community structure in an aerated lagoon revealed by ribosomal intergenic spacer analyses and 16S ribosomal DNA sequencing. Appl. Environ. Microbiol. 67: 1565–1574. https://doi.org/10.1128/AEM.67.4.1565-1574.2001
  131. Zabranska, J. and Pokorna, D. (2018) Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. Biotechnol Adv. 36(3), 707-720. https://doi.org/10.1016/j.biotechadv.2017.12.003
  132. Zahedi, S., Sales, D., Romero, L. and Solera, R. (2014) Biomethanization from sulfate-containing municipal solid waste: effect of molybdate on microbial consortium. Journal of Chemical Technology and Biotechnology. 89(9):1379-1387. https://doi.org/10.1002/jctb.4215
  133. Zhang, L., Keller, J. and Yuan, Z. (2009) Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing. Water Research. 43(17), 4123-4132. https://doi.org/10.1016/j.watres.2009.06.013
  134. Zhang, Q., Hu, J., & Lee, D. (2016) Biogas from anaerobic digestion processes: Research updates. Renewable Energy. 98, 108-119. http://dx.doi.org/10.1016/j.renene.2016.02.029
  135. Zhao, J., Liu, Y., Wang, D., Li, X., Zeng, G., & Yang, Q. (2017). Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Manag. 67, 308-314. https://doi.org/10.1016/j.wasman.2017.05.016
  136. Zverlov, V.V., Hiegl, W., Köck, D.E., Kellermann, J., Köllmeier, T. and Schwarz, W.H. (2010) Hydrolytic bacteria in mesophilic and thermophilic degradation of plant biomass. Eng Life Sci. 10: 528-536. https://doi.org/10.1002/elsc.201000059

Last update:

  1. Anaerobic Biodigesters for Human Waste Treatment

    B. Basant Kumar Pillai, Mukesh Kumar Meghvansi, M. Chaithanya Sudha, Murari Sreenivasulu. Environmental and Microbial Biotechnology, 2022. doi: 10.1007/978-981-19-4921-0_6
  2. Selective Inhibition of Low Temperature (15℃) Microbial Electrosynthesis (MES) Methanogenesis by Sodium 2-Bromoethanesulfonate

    Yunjie Chen, Jiawei Tang, Hui Wang, Xiaoli Pan, Lei Liu, Hao Cheng, Feng Luo. SSRN Electronic Journal, 2022. doi: 10.2139/ssrn.4096287
  3. Understanding working conditions for Entererococcus sp. L1 on methane production: A low temperature condition-based biogas production experiment

    Jingping Dai, Jiang Li, Yang Xinping, Jing Chen, Wang Zhifang, Xie Yuqing, Wang Xiaou, Huitao Zhang, Aihemati Guli, Feng Lei. Biomass and Bioenergy, 153 , 2021. doi: 10.1016/j.biombioe.2021.106210
  4. Effect of biomass co-digestion and application of artificial intelligence in biogas production: A review

    Moses Oluwatobi Fajobi, Olumuyiwa Ajani Lasode, Adekunle Akanni Adeleke, Peter Pelumi Ikubanni, Ayokunle Olubusayo Balogun. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44 (2), 2022. doi: 10.1080/15567036.2022.2085823
  5. Thermophilic anaerobic digestion as suitable bioprocess producing organic and chemical renewable fertilizers: A full-scale approach

    Ambrogio Pigoli, Massimo Zilio, Fulvia Tambone, Stefania Mazzini, Micol Schepis, Erik Meers, Oscar Schoumans, Andrea Giordano, Fabrizio Adani. Waste Management, 124 , 2021. doi: 10.1016/j.wasman.2021.02.028
  6. Effect of Hydrogen Peroxide on Hydrogen Production from Melon Fruit (Cucumis melo L.) Waste by Anaerobic Digestion Microbial Community

    Agung Dian Kharisma, Yumechris Amekan, Sarto Sarto, Muhammad Nur Cahyanto. International Journal of Renewable Energy Development, 11 (1), 2022. doi: 10.14710/ijred.2022.40883

Last update: 2025-01-19 22:57:48

No citation recorded.