skip to main content

Optimizing the Synthesis of Lignin Derivatives from Acacia mangium to Improve the Enzymatic Hydrolysis of Kraft Pulp Sorghum Bagasse

1Research Center for Biomaterials, Indonesian Institute for Sciences , Jl Raya Bogor KM 46 Cibinong 16911,, Indonesia

2Diploma Program for Chemical Analysis, Bogor Agricultural University, Bogor 16151, Indonesia

3Department of Chemistry, Faculty of Mathematics and Science, University of Gajah Mada, sekip Utara, Bulaksumur, Yogyakarta 5528,, Indonesia

4 Research Center for Chemistry– LIPI, Kawasan PUSPITEK, Muncul, Serpong, 15314,, Indonesia

5 Department of Forest Product, Faculty of Forestry, Universitas Sumatera Utara, Kampus USU, Padang Bulan, Medan, Sumatera Utara, Indonesia, Indonesia

6 fThe Center for Research and Development on Forest Products, Jl Gunung Batu No 5, Bogor 16610,, Indonesia

View all affiliations
Received: 23 Jan 2020; Revised: 16 Apr 2020; Accepted: 25 Apr 2020; Available online: 4 May 2020; Published: 15 Jul 2020.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2020 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The present study is aimed at optimizing the synthesis of Amphipilic lignin derivatives (A-LD) from the isolated lignin of A.mangium black liquor (BL), using the one and two step acid isolation method, and commercial lignin (LS) was used as comparison. The experimental design was conducted using Taguchi method, which consisted of four parameters and two level factors, with reference to the matrix orthogonal array, L8, including temperature, reaction time, amount of polyethylene glycol diglycidylethers (PEGDE) and Kraft lignin (KL). Furthermore, the kraft pulp of sweet sorghum bagasse (SSB) was used as substrate in the enzymatic hydrolysis (NREL method), with addition of A-LD, whose functional group and surface tension were then characterised using ATR-FTIR and surface tension equipment. Conversely, an improvement in the reducing sugar yield (RSY) compared to the control was observed after adding various A-LDs to the substrate during enzymatic hydrolysis. This product was more prospective for L2S than others products under milder circumstances, due to the fact that it possesses the lowest surface tension. Also, Taguchi analysis demonstrated the treatment at 60 °C for 1 h with 3.0 g and 1.0 g of PEDGE and lignin, respectively as the optimum condition, while the amount of lignin present was included as a factor with the propensity to significantly affect A-LD L1S and LS. Therefore, it was established that the A-LDs from A. mangium kraft lignin require milder synthesis conditions, compared to other existing methods and despite the differences in optimum experimental condition for L2S and LS, the functional groups in the IR spectra possessed very identical characteristics. 

Fulltext View|Download
Keywords: Amphipilic Lignin Derivatives; lignin 1 and 2 step; reducing sugar yield; Optimization; Taguchi analysis; A-LD synthesis
Funding: Research Center for Physics, Indonesian Institute for Sciences

Article Metrics:

  1. Asosiasi Pulp dan Paper Indonesia. (2016). Opportunities and challenges of Indonesian pulp and paper industry. http://www.pptgroup.se/wp-content/uploads/2016/02/Indonesian-Pulp-and-Paper-Industry-APKI-1.pdf. [Accessed: 4 Mei 2020]
  2. Ahmad, T, Daryanto, A., Oktaviani, R., Priyarsono. 2018. Global value chain of Indonesian pulp and paper industry. Jurnal Manajemen & Agribisnis 15(2):118-128 https://doi.org/10.17358/jma.15.2.118
  3. Börjesson, J., Peterson, R, and Tjerneld, F. (2007). Enhanced enzymatic conversion of softwood lignocellulose by poly(ethylene glycol) addition. Enzyme Microb. Technol.40 (4), 754-762 https://doi.org/10.1016/j.enzmictec.2006.06.006
  4. Chen, L, Xianhua, W, Haiping, Y, Qiang L, Di, L, Qing Y, Hanping C. (2015) Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and PyGC/MS. J Analytical and Applied Pyrolysis 113, 499-507. https://doi.org/10.1016/j.jaap.2015.03.018
  5. Cheng, N., Yamamoto, Y., Koda, K., Tamai, Y., and Uraki, Y. (2014). Amphipathic lignin derivatives to accelerate simultaneous saccharification and fermentation of unbleached softwood pulp for bioethanol production. Bioresour. Technol., 173, 104-109 https://doi.org/10.1016/j.biortech.2014.09.093
  6. Cheng, N, Koda, K., Tamai, Y., Yamamoto, Y., Takasuka, T.E., and Uraki, Y. (2017). Optimization of simultaneous saccharification and fermentation conditions with amphipathic lignin derivatives for concentrated bioethanol production. Bioresour. Technol.232, 126-132 https://doi.org/10.1016/j.biortech.2017.02.018
  7. Eriksson, T., Börjesson, J., and Tjerneld, F. (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb. Technol.31(3),353-364 https://doi.org/10.1016/S0141-0229(02)00134-5
  8. Fajriutami, T., Seo, Y.C., and Chu, Y.H. (2013). Optimization of two-step catalyzed biodiesel production from soybean waste cooking oil. J. Mater. Cycles Waste Manag.,15(2),179-186 https://doi.org/10.1007/s10163-012-0106-5
  9. Fatriasari, W, Supriyanto, and Iswanto, A. H. (2015). The Kraft pulp and paper properties of sweet sorghum bagasse (Sorghum bicolor L Moench). J. Eng. Technol. Sci., 47(2),149-159 https://doi.org/10.5614/j.eng.technol.sci.2015.47.2.4
  10. Fatriasari, W, Adi, D.T.N, Laksana, R.P.B, Fajriutami, T, Raniya, R, Ghozali, M., Hermiati, E. (2017).The effect of Amphipilic lignin derivatives addition on enzymatic hydrolysis performance of kraft pulp from sorghum bagasse. IOP Conf. Series: Earth and Environmental Science. 141: 012005. https://doi.org/10.1088/1755-1315/141/1/012005
  11. Gilligan, J.J. and Pyle J.L. (1974). The Organic Chemicals Industries in Chemistry and the Technological Backlash, New Jersey: Prentice-Hall
  12. Husaeni. 2019. https://industri.kontan.co.id/news/industri-pulp-and-kertas-masih-bertumbuh-5-di-2019 [Accessed: 11 January 2017]
  13. Hermiati, E, Risanto, L, Lubis, M. A. R., Laksana, R.P.B., and Dewi, A.R. (2017). Chemical characterization of lignin from kraft pulping black liquor of Acacia mangium. International Symposium on Applied Chemistry (ISAC) 2016. AIP Conf. Proc. 1803, 20005, 020005-1- 020005-7 https://doi.org/10.1063/1.4973132
  14. Homma, H., Kubo, S., Yamada, T., Koda, K., Matsushita, Y., and Uraki, Y. 2010. Conversion of technical lignins to amphiphilic derivatives with high surface activity. J. Wood Chem. Technol.30 (2),164-174. https://doi.org/10.1080/02773810903349713
  15. Homma, H., Kubo, S., Yamada, T., Matsushita, Y., and Uraki, Y. (2008). Preparation and characterization of amphiphilic lignin derivatives as surfactants. J. Wood Chem. Technol.28 (4), 270-282. https://doi.org/10.1080/02773810802510688
  16. http://lipi.go.id/berita/surfaktan-sudah-seharusnya-dikembangkan-besar-besaran/778. [Accessed: 13 September 2017]
  17. Jeon, S.I. and Andrade, J.D. (1991). Protein-surface interactions in the presence of polyethylene oxide. J. Colloid Interface Sci.142 (1):159-166 https://doi.org/10.1016/0021-9797(91)90044-9
  18. Kaar, W.E. and Holtzapple, M.T. (1998). Benefits from Tween during enzymic hydrolysis of corn stover. Biotechnol. Bioeng.,59(4), 419-427 https://doi.org/10.1002/(SICI)1097-0290(19980820)59:4%3C419::AID-BIT4%3E3.0.CO;2-J
  19. Lee, W.G., Lee, J.S., Lee, J.P., Shin, C.S., Kim, M.S. and Park, S.C. (1996). Effect of surfactants on ethanol fermentation using glucose and cellulosic hydrolyzates. Biotechnol. Lett.,18 (3), 299-304 https://doi.org/10.1007/BF00142948
  20. Li, Y, Zongping, S, Xiaoyan, G, Junhua, Z. (2016). Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose. J Biotechnology for Biofuels.9 (20), 1-9 https://doi.org/10.1186/s13068-016-0434-0
  21. Mercer International Groups. 2008. https://www.sec.gov/Archives/edgar/data/1333274/000094523408000047/o39326exv99w1.htm [Accessed: 13 September 2017]
  22. Motawie, AM, Sherif, MH, Badr, MM, Amer, A.A, Shehat, AS. (2010). Synthesis and characterization of waterborne epoxy resins for coating application. J Basic and Applied Sciences 4(6): 1376-1382
  23. Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3):426-428. https://doi.org/10.1021/ac60147a030
  24. Roy, R.K. (1990). A Primer on the Taguchi Method. Society of Manufacturing Engineers
  25. Silsia, D, Ridwan, Y., Mucharromah, and Antonio, J. (2011). Kajian ekonomi biokraft campuran batang dan limbah cabang mangium pada berbagai kondisi pemasakan pulp. J. Ilmu Kesehat.5(2), 108-117 https://doi.org/10.20884/1.jm.2010.5.2.77
  26. Solihat, N.N, Fajriutami, T., Adi, D.T.N., Fatriasari, W., and Hermiati, E. (2017). Reducing sugar production of sweet sorghum bagasse kraft pulp. AIP Conference Proceedings 1803, 20012-1-020012-8. https://doi.org/10.1063/1.4973139
  27. Swasono, A.W.P., Sianturi, P.D.E. and Masyithah, Z. (2012). Sintesis surfaktan alkil poliglikosida pari plukosa dan dodekanol dengan katalis asam. J. Tek. Kim. USU, 1(1), 5-9. https://doi.org/10.32734/jtk.v1i1.1398
  28. Tseng, K-H, Shiao,Y-F, Chang,R-Fand Yeh,Y-T (2003) Optimization of microwave-based heating of cellulosic biomass using Taguchi method. Materials6(8), 3404-3419. https://doi.org/10.3390/ma6083404
  29. Uraki, Y, Honma, H, Yamada, T, Kubo, S and Nojiri, M (2014) Lignin-based enzyme stabilizer US 8911976 B2 Granted 16 December 2014
  30. Uraki, Y, Koda, K, Yamada, T, Oikawa. C, Aso, T. (2012) Novel functions of non-ionic, amphiphilic lignin derivatives. ACS Symposium Series Book. 1107 Chap 13. 243-254. https://doi.org/10.1021/bk-2012-1107.ch013
  31. Uraki, Y., Ishikawa, N., Nishida, M., Sano, Y. (2001). Preparation of Amphipilic lignin derivative as cellulose stabilizer. J.Wood Sci.47(4),301-307. https://doi.org/10.1007/BF00766717
  32. Winarni, I., Koda, K., Waluyo, T.K., Pari, G., Uraki, Y. (2014). Enzymatic saccharification of soda pulp from sago starch waste using sago lignin-based amphipatic derivatives. J. Wood Chem. Technol. 34(3), 157-168. https://doi.org/10.1080/02773813.2013.846912
  33. Winarni, I., Oikawa, C., Yamada, T., Igarashi, K., Koda, K. and Uraki, Y. (2013) Improvement of enzymatic saccharification of unbleached cedar pulp with amphipathic lignin derivatives. BioResources8(2), 2195-2208 https://doi.org/10.15376/biores.8.2.2195-2208

Last update:

  1. Synthesis of lignin-based biosurfactant derived from kraft black liquor and its effect on enzymatic hydrolysis of pretreated biomass

    Nissa Nurfajrin Solihat, Dwi Ajias Pramasari, Raden Permana Budi Laksana, Witta Kartika Restu, Muhammad Ghozali, Evi Triwulandari, Widya Fatriasari, Takashi Watanabe. Sustainable Chemistry and Pharmacy, 34 , 2023. doi: 10.1016/j.scp.2023.101152
  2. A Comprehensive Review on Natural Fibers: Technological and Socio-Economical Aspects

    Azizatul Karimah, Muhammad Rasyidur Ridho, Sasa Sofyan Munawar, Ismadi, Yusup Amin, Ratih Damayanti, Muhammad Adly Rahandi Lubis, Asri Peni Wulandari, Nurindah, Apri Heri Iswanto, Ahmad Fudholi, Mochamad Asrofi, Euis Saedah, Nasmi Herlina Sari, Bayu Rizky Pratama, Widya Fatriasari, Deded Sarip Nawawi, Sanjay Mavinkere Rangappa, Suchart Siengchin. Polymers, 13 (24), 2021. doi: 10.3390/polym13244280
  3. Enzymatic Hydrolysis Performance of Biomass by the Addition of a Lignin Based Biosurfactant

    Widya FATRIASARI, Fajar NURHAMZAH, Rika RANIYA, R.Permana Budi LAKSANA, Sita Heris ANITA, Apri Heri ISWANTO, Euis HERMIATI. Journal of the Korean Wood Science and Technology, 48 (5), 2020. doi: 10.5658/WOOD.2020.48.5.651
  4. Multifaceted Bamboo

    Widya Fatriasari, Nissa Nurfajrin Solihat, Fahriya Puspita Sari, Azizatul Karimah, Asma Sohail. 2023. doi: 10.1007/978-981-19-9327-5_11

Last update: 2024-09-17 00:09:17

No citation recorded.