Bioelectricity Generation From Single-Chamber Microbial Fuel Cells With Various Local Soil Media and Green Bean Sprouts as Nutrient


Article Metrics:
- Aelterman, P., Freguia, S., Keller, J., Verstraete, W., & Rabaey, K. (2008). The anode potential regulates bacterial activity in microbial fuel cells. Applied Microbiology and Biotechnology, 78(3), 409–418. DOI: 10.1007/s00253-007-1327-8
- Asai, Y., Miyahara, M., Kouzuma, A., & Watanabe, K. (2017). Comparative evaluation of wastewater-treatment microbial fuel cells in terms of organics removal, waste-sludge production, and electricity generation. Bioresources and Bioprocessing, 4(1). DOI: 10.1186/s40643-017-0163-7
- Baranitharan, E., Khan, M. R., Prasad, D. M. R., Teo, W. F. A., Tan, G. Y. A., & Jose, R. (2015). Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent. Bioprocess and Biosystems Engineering, 38(1), 15–24. DOI: 10.1007/s00449-014-1239-9
- Biffinger, J. C., Ray, R., Little, B., & Ringeisen, B. R. (2007). Diversifying biological fuel cell designs by use of nanoporous filters. Environmental Science and Technology, 41(4), 1444–1449. DOI: 10.1021/es061634u
- Cao, W., Luo, Q., & Shen, Ya Ling, D. Z. (2006). Optimization of culture on the overproduction of TRAIL in high-cell-density culture by recombinant Escherichia coli. Applied Microbiology and Biotechnology, 71(2), 184–191. DOI: 10.1007/s00253-005-0131-6
- Chaturvedi, V., & Verma, P. (2016). Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresources and Bioprocessing, 3(1). DOI: 10.1186/s40643-016-0116-6
- Cheng, S., Xing, D., & Logan, B. E. (2011). Electricity generation of single-chamber microbial fuel cells at low temperatures. Biosensors and Bioelectronics, 26(5), 1913–1917. DOI: 10.1016/j.bios.2010.05.016
- Choudhury, P., Prasad Uday, U. S., Bandyopadhyay, T. K., Ray, R. N., & Bhunia, B. (2017). Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: A review. Bioengineered, 8(5), 471–487. DOI: 10.1080/21655979.2016.1267883
- Du, Z., Li, H., & Gu, T. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25(5), 464–482. DOI: 10.1016/j.biotechadv.2007.05.004
- Fosso-kankeu, E., Marx, S., Waanders, F., & Jacobs, V. (2015). Impact of soil type on electricity generation from a Microbial Fuel Cell. DOI: 10.15242/iie.e1115020
- Goto, Y., & Yoshida, N. (2016). Preliminary evaluation of a microbial fuel cell treating artificial dialysis wastewater using graphene oxide. AIP Conference Proceedings, 1709(February). DOI: 10.1063/1.4941206
- He, W., Zhang, X., Liu, J., Zhu, X., Feng, Y., & Logan, B. E. (2016). Microbial fuel cells with an integrated spacer and separate anode and cathode modules. Environmental Science: Water Research and Technology, 2(1), 186–195. DOI: 10.1039/c5ew00223k
- Helder, M., Strik, D. P., Hamelers, H. V., & Buisman, C. J. (2012). The flat-plate plant-microbial fuel cell: The effect of a new design on internal resistances. Biotechnology for Biofuels, 5. DOI: 10.1186/1754-6834-5-70
- Kadivarian, M., & Karamzadeh, M. (2020). Electrochemical modeling of microbial fuel cells performance at different operating and structural conditions. Bioprocess and Biosystems Engineering, 43(3), 393–401. DOI: 10.1007/s00449-019-02235-1
- Kim, J. R., Jung, S. H., Regan, J. M., & Logan, B. E. (2007). Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology, 98(13), 2568–2577. DOI: 10.1016/j.biortech.2006.09.036
- Koók, L., Nemestóthy, N., Bélafi-Bakó, K., & Bakonyi, P. (2020). Investigating the specific role of external load on the performance versus stability trade-off in microbial fuel cells. Bioresource Technology, 309(March). DOI: 10.1016/j.biortech.2020.123313
- Liu, K. S. (2008). Food Use of Whole Soybeans. Soybeans: Chemistry, Production, Processing, and Utilization, 441–481. DOI: 10.1016/B978-1-893997-64-6.50017-2
- Liu, Z., Liu, J., Zhang, S., & Su, Z. (2009). Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon- and protein-rich substrates. Biochemical Engineering Journal, 45(3), 185–191. DOI: 10.1016/j.bej.2009.03.011
- Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40(17), 5181–5192. DOI: 10.1021/es0605016
- Logan, B. E., Murano, C., Scott, K., Gray, N. D., & Head, I. M. (2005). Electricity generation from cysteine in a microbial fuel cell. Water Research, 39(5), 942–952. DOI: 10.1016/j.watres.2004.11.019
- Logan, B. E., & Rabaey, K. (2012). Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science, 337(6095), 686–690. DOI: 10.1126/science.1217412
- Logan, B. E., Wallack, M. J., Kim, K. Y., He, W., Feng, Y., & Saikaly, P. E. (2015). Assessment of Microbial Fuel Cell Configurations and Power Densities. Environmental Science and Technology Letters, 2(8), 206–214. DOI: 10.1021/acs.estlett.5b00180
- Marashi, S. K. F., & Kariminia, H. R. (2015). Performance of a single chamber microbial fuel cell at different organic loads and pH values using purified terephthalic acid wastewater. Journal of Environmental Health Science and Engineering, 13(1), 1–6. DOI: 10.1186/s40201-015-0179-x
- Min, B., & Logan, B. (2004). C on t inuou s E l e c t r ici t y G e n e r a t ion f r o m D o m e st ic W a st ewa t e r a nd O r g a nic S ub st r a t e s in a F l a t P l a t e M ic r obi a l F u e l C e llfile:///Users/aman/Downloads/apa.csl. Environ. Sci. Technol., 38(21), 5809–5814. DOI: 10.1021/es0491026
- Misto, Mulyono, T., Cahyono, B. E., & Zain, T. (2019). Determining sugar content in sugarcane plants using LED spectrophotometer. AIP Conference Proceedings, 2202(December). DOI: 10.1063/1.5141738
- Ömeroğlu, S., & Sanin, F. D. (2016). Bioelectricity Generation From Wastewater Sludge Using Microbial Fuel Cells: A Critical Review. Clean - Soil, Air, Water, 44(9), 1225–1233. DOI: 10.1002/clen.201500829
- Pant, D., Van Bogaert, G., Porto-Carrero, C., Diels, L., & Vanbroekhoven, K. (2011). Anode and cathode materials characterization for a microbial fuel cell in half cell configuration. Water Science and Technology, 63(10), 2457–2461. DOI: 10.2166/wst.2011.217
- Park, D. O. O. H. (2000). Electricity Generation in Microbial Fuel Cells Using Neutral Red as an Electronophore Downloaded from http://aem.asm.org/ on September 27 , 2017 by INDIAN INST OF TECHNOLOGY Kharagpur. Applied Environmental Microbiology, 66(4), 1292–1297. DOI: 10.1128/AEM.66.4.1292-1297.2000
- Parkash, A. (2016). Microbial Fuel Cells: A Source of Bioenergy. Journal of Microbial & Biochemical Technology, 8(3), 247–255. DOI: 10.4172/1948-5948.1000293
- Rabaey, K., Lissens, G., Siciliano, S. D., & Verstraete, W. (2003). A MFC capable of converting glucose to electricity at high rate and efficeincy.pdf. Biotechnology Letter, 25, 1531–1535
- Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: Novel biotechnology for energy generation. Trends in Biotechnology, 23(6), 291–298. DOI: 10.1016/j.tibtech.2005.04.008
- Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., & Oh, S. E. (2015). Microbial fuel cell as new technol ogy for bioelectricity generation: A review. Alexandria Engineering Journal, 54(3), 745–756. DOI: 10.1016/j.aej.2015.03.031
- Rolfe, M. D., Rice, C. J., Lucchini, S., Pin, C., Thompson, A., Cameron, A. D. S., Alston, M., Stringer, M. F., Betts, R. P., Baranyi, J., Peck, M. W., & Hinton, J. C. D. (2012). Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. Journal of Bacteriology, 194(3), 686–701. DOI: 10.1128/JB.06112-11
- Shaheen Aziz, A. P. (2015). Utilization of Sewage Sludge for Production of Electricity using Mediated Salt Bridge Based Dual Chamber Microbial Fuel Cell. Journal of Bioprocessing & Biotechniques, 05(08). DOI: 10.4172/2155-9821.1000251
- Song, H. L., Zhu, Y., & Li, J. (2019). Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells – A mini review. Arabian Journal of Chemistry, 12(8), 2236–2243. DOI: 10.1016/j.arabjc.2015.01.008
- Sultana, S. T., Babauta, J. T., & Beyenal, H. (2015). Electrochemical biofilm control: A review. Biofouling, 31(9), 745–758. DOI: 10.1080/08927014.2015.1105222
- Tharali, A. D., Sain, N., & Osborne, W. J. (2016). Microbial fuel cells in bioelectricity production. Frontiers in Life Science, 9(4), 252–266. DOI: 10.1080/21553769.2016.1230787
- Totsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., & Kögel-Knabner, I. (2018). Microaggregates in soils. Journal of Plant Nutrition and Soil Science, 181(1), 104–136. DOI: 10.1002/jpln.201600451
- Ucar, D., Zhang, Y., & Angelidaki, I. (2017). An overview of electron acceptors in microbial fuel cells. Frontiers in Microbiology, 8(APR), 1–14. DOI: 10.3389/fmicb.2017.00643
- Wrighton, K. C., Virdis, B., Clauwaert, P., Read, S. T., Daly, R. A., Boon, N., Piceno, Y., Andersen, G. L., Coates, J. D., & Rabaey, K. (2010). Bacterial community structure corresponds to performance during cathodic nitrate reduction. ISME Journal, 4(11), 1443–1455. DOI: 10.1038/ismej.2010.66
- Xia, C., Xu, M., Liu, J., Guo, J., & Yang, Y. (2017). Corrigendum to “Sediment microbial fuel cell prefers to degrade organic chemicals with higher polarity” (Bioresour Technol. 190 (2015) 420–423) (S0960852415005799) (10.1016/j.biortech.2015.04.072). Bioresource Technology, 226, 272. DOI: 10.1016/j.biortech.2016.12.066
- Xu, L., Zhao, Y., Doherty, L., Hu, Y., & Hao, X. (2016). The integrated processes for wastewater treatment based on the principle of microbial fuel cells: A review. Critical Reviews in Environmental Science and Technology, 46(1), 60–91. DOI: 10.1080/10643389.2015.1061884
- Yasri, N., Roberts, E. P. L., & Gunasekaran, S. (2019). The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells. Energy Reports, 5, 1116–1136. DOI: 10.1016/j.egyr.2019.08.007
- Zaidi, S. M. J., & Rauf, M. A. (2009). Fuel cell fundamentals. In Polymer Membranes for Fuel Cells. DOI: 10.1007/978-0-387-73532-0_1
- Zhang, E., Liu, L., & Cui, Y. (2013). Effect of pH on the performance of the anode in microbial fuel cells. Advanced Materials Research, 608–609, 884–888. DOI: 10.4028/www.scientific.net/AMR.608-609.884
- Zhang, T., Zeng, Y., Chen, S., Ai, X., & Yang, H. (2007). Improved performances of E. coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes. Electrochemistry Communications, 9(3), 349–353. DOI: 10.1016/j.elecom.2006.09.025
Last update: 2021-04-22 04:40:02
Last update: 2021-04-22 04:40:02
-
A new method of bio-catalytic surface modification for microbial desalination cell
Mardiana U.. International Journal of Renewable Energy Development, 10 (2), 2021. doi: 10.14710/ijred.2021.34235

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.