skip to main content

CFD Investigation of A New Elliptical-Bladed Multistage Savonius Rotors

1Laboratory of Renewable Energy, Faculty of Science, Ibn Tofail University, Kenitra, Morocco

2Laboratoire D’ingénierie, Management Industriel et Innovation Université Hassan, Settat, Morocco

Received: 17 Apr 2020; Revised: 25 Jun 2020; Accepted: 29 Jun 2020; Available online: 1 Jul 2020; Published: 15 Oct 2020.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2020 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The Savonius-conventional wind turbine is a class of wind turbines designed with a vertical axis. It has a good starting capacity and   an insensitivity to wind direction. It works relatively at low wind speed in an easy installation. Savonius wind turbine faces major drawbacks, including some of the low efficiency and high negative torque created by the returning blade. Many attempts have been undertaken to optimize the blade’s shape to increase the performance of these wind turbines. The vertical axis is still under development. The elliptical-blades with a cut angle equal 47.50° have recently shown enhanced performance. In this study, we investigate the effect of Elliptical-bladed multistage Savonius Rotors (rotor aspect ratio, stage aspect ratio) on the performance by means of numerical simulation. The results obtained by comparison of one, two, and three-stage rotors indicate that the maximum power coefficient increase with a number of the stages (for the rotors with similar RAR of 0.7). Moreover, for the rotors with similar SAR of 0.7, the two stages have the highest performance than others.
Fulltext View|Download
Keywords: Savonius rotor; Wind energy; multistage; numerical simulation

Article Metrics:

  1. Akwa, J. V., da Silva Júnior, G. A., & Petry, A. P. (2012). Discussion on the verification of the overlap ratio influence on performance coefficients of a Savonius wind rotor using computational fluid dynamics. Renewable energy, 38(1), 141‑149. https://doi.org/10.1016/j.renene.2011.07.013
  2. Aldos, T. K. (1984). Savonius rotor using swinging blades as an augmentation system. Wind Engineering, 214‑220
  3. Aldoss, T. K., & Najjar, Y. S. (1985). Further development of the swinging-blade Savonius rotor. Wind Engineering, 165‑170
  4. Alom, N., Kolaparthi, S. C., Gadde, S. C., & Saha, U. K. (2016). Aerodynamic design optimization of elliptical-bladed Savonius-style wind turbine by numerical simulations. ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. https://doi.org/10.1115/OMAE2016-55095
  5. Alom, N., & Saha, U. K. (2017). Arriving at the optimum overlap ratio for an elliptical-bladed Savonius rotor. ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. https://doi.org/10.1115/GT2017-64137
  6. Alom, N., & Saha, U. K. (2018). Performance evaluation of vent-augmented elliptical-bladed savonius rotors by numerical simulation and wind tunnel experiments. Energy, 152, 277‑290. https://doi.org/10.1016/j.energy.2018.03.136
  7. Alom, N., and Saha, U.K. (2019). Drag and lift characteristics of a novel elliptical-bladed Savonius rotor with vent augmenters. Journal of Solar Energy Engineering 141. https://doi.org/10.1115/1.4043516
  8. Altan, B. D., & Atılgan, M. (2010). The use of a curtain design to increase the performance level of a Savonius wind rotors. Renewable Energy, 35(4), 821‑829. https://doi.org/10.1016/j.renene.2009.08.025
  9. Bach, G. von. (1931). Untersuchungen über Savonius-rotoren und verwandte strömungsmaschinen. Forschung auf dem Gebiet des Ingenieurwesens A, 2(6), 218‑231. https://doi.org/10.1007/BF02579117
  10. Banerjee, A., Roy, S., Mukherjee, P., & Saha, U. K. (2014). Unsteady flow analysis around an elliptic-bladed Savonius-style wind turbine. ASME 2014 Gas Turbine India Conference. https://doi.org/10.1115/GTINDIA2014-8141
  11. Benesh, A. H. (1988). Wind turbine system using a vertical axis savonius-type rotor. Google Patents
  12. Blackwell, B. F., Feltz, L. V., & Sheldahl, R. E. (1977). Wind tunnel performance data for two-and three-bucket Savonius rotors. Sandia Laboratories Springfield, VA, USA
  13. Chen, J., Chen, L., Nie, L., Xu, H., Mo, Y., & Wang, C. (2016). Experimental study of two-stage Savonius rotors with different gap ratios and phase shift angles. Journal of Renewable and Sustainable Energy, 8(6), 063302. https://doi.org/10.1063/1.4966706
  14. ElCheikh, A., Elkhoury, M., Kiwata, T., & Kono, T. (2018). Performance analysis of a small-scale orthopter-type vertical axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 180, 19‑33. https://doi.org/10.1016/j.jweia.2018.07.008
  15. Frikha, S., Driss, Z., Ayadi, E., Masmoudi, Z., & Abid, M. S. (2016). Numerical and experimental characterization of multi-stage Savonius rotors. Energy, 114, 382‑404. https://doi.org/10.1016/j.energy.2016.08.017
  16. Golecha, K., Eldho, T. I., & Prabhu, S. V. (2011). Influence of the deflector plate on the performance of modified Savonius water turbine. Applied Energy, 88(9), 3207‑3217. https://doi.org/10.1016/j.apenergy.2011.03.025
  17. Grinspan, A. S., Kumar, P. S., Mahanta, P., Saha, U. K., Rao, D. R., & Bhanu, G. V. (2001). Design, development & testing of Savonius wind turbine rotor with twisted blades. Proceedings 28th National Conference on Fluid Mechanics and Fluid Power, Dec, 13‑15
  18. Hayashi, T., Li, Y., & Hara, Y. (2005). Wind tunnel tests on a different phase three-stage Savonius rotor. JSME International Journal Series B Fluids and Thermal Engineering, 48(1), 9‑16. https://doi.org/10.1299/jsmeb.48.9
  19. Johannes, S. S. (1929). Rotor adapted to be driven by wind or flowing water. Google Patents
  20. Kacprzak, K., Liskiewicz, G., & Sobczak, K. (2013). Numerical investigation of conventional and modified Savonius wind turbines. Renewable energy, 60, 578‑585. https://doi.org/10.1016/j.renene.2013.06.009
  21. Kamoji, M. A., Kedare, S. B., & Prabhu, S. V. (2008). Experimental investigations on single stage, two stage and three stage conventional Savonius rotor. International Journal of Energy Research, 32(10), 877‑895. https://doi.org/10.1002/er.1399
  22. Kamoji, M. A., Kedare, S. B., & Prabhu, S. V. (2009). Experimental investigations on single stage modified Savonius rotor. Applied Energy, 86(7‑8), 1064‑1073. https://doi.org/10.1016/j.apenergy.2008.09.019
  23. Mahmoud, N. H., El-Haroun, A. A., Wahba, E., & Nasef, M. H. (2012). An experimental study on improvement of Savonius rotor performance. Alexandria Engineering Journal, 51(1), 19‑25. https://doi.org/10.1016/j.aej.2012.07.003
  24. Mendoza, V., Katsidoniotaki, E., and Bernhoff, H. (2020). Numerical Study of a Novel Concept for Manufacturing Savonius Turbines with Twisted Blades. Energies 13, 1874. https://doi.org/10.3390/en13081874
  25. Menet, J.-L. (2004). A double-step Savonius rotor for local production of electricity : A design study. Renewable energy, 29(11), 1843‑1862. https://doi.org/10.1016/j.renene.2004.02.011
  26. Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8), 1598‑1605. https://doi.org/10.2514/3.12149
  27. Mojola, O. O. (1985). On the aerodynamic design of the Savonius windmill rotor. Journal of Wind Engineering and Industrial Aerodynamics, 21(2), 223‑231. https://doi.org/10.1016/0167-6105(85)90005-4
  28. Nugroho, A.D., Tjahjana, D.D.D.P., and Kristiawan, B. (2020). Slotted blade effect on Savonius wind rotor performance. In AIP Conference Proceedings, (AIP Publishing LLC), p. 030102. https://doi.org/10.1063/5.0000891
  29. Ogawa, T., Yoshida, H., & Yokota, Y. (1989). Development of rotational speed control systems for a Savonius-type wind turbine. J. Fluids Eng. 111(1), 53-58 https://doi.org/10.1115/1.3243598
  30. Roy, S., & Saha, U. K. (2013a). Investigations on the effect of aspect ratio into the performance of Savonius rotors. ASME 2013 Gas Turbine India Conference. https://doi.org/10.1115/GTINDIA2013-3729
  31. Roy, S., & Saha, U. K. (2013b). Review of experimental investigations into the design, performance and optimization of the Savonius rotor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 227(4), 528‑542. https://doi.org/10.1177/0957650913480992
  32. Roy, S., & Saha, U. K. (2015). Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine. Applied Energy, 137, 117‑125. https://doi.org/10.1016/j.apenergy.2014.10.022
  33. Saha, U. K., & Rajkumar, M. J. (2006). On the performance analysis of Savonius rotor with twisted blades. Renewable energy, 31(11), 1776‑1788. https://doi.org/10.1016/j.renene.2005.08.030
  34. Saha, U. K., Thotla, S., & Maity, D. (2008). Optimum design configuration of Savonius rotor through wind tunnel experiments. Journal of Wind Engineering and Industrial Aerodynamics, 96(8‑9), 1359‑1375. https://doi.org/10.1016/j.jweia.2008.03.005
  35. Sanusi, A., Soeparman, S., Wahyudi, S., & Yuliati, L. (2016). Experimental study of combined blade savonius wind turbine. International Journal of Renewable Energy Research (IJRER), 6(2), 614‑619
  36. Savonius, S. J. (1931). The S-rotor and its applications. Mechanical engineering, 53(5), 333‑338
  37. Scheaua, F.D. (2020). Comparative Numerical Analysis on Vertical Wind Turbine Rotor Pattern of Bach and Benesh Type. Energies 13, 2311. https://doi.org/10.3390/en13092311
  38. Zemamou, M. abdelghani toumi, khalid mrigua, yahya lahlou, et mohammed aggour,(2020). A novel blade design for savonius wind turbine based on polynomial bezier curves for aerodynamic performance enhancement. Int. J. Green Energy, doi: 10.1080/15435075.2020.1779077.https://doi.org/10.1080/15435075.2020.1779077
  39. Zemamou, M., Toumi, A., Mrigua, K., & Aggour, M. (2019.). Modified Design of Savonius Wind Turbine Blade for Performance Improvement. International Journal of Innovative Technology and Exploring Engineering, 9(1),1432-1437. https://doi.org/10.35940/ijitee.A4202.119119

Last update:

  1. Numerical Investigation of a New Modified Savonius Wind Turbines

    Khalid Mrigua, Mounia Zemamou, Mohammed Aggour. International Journal of Renewable Energy Development, 11 (4), 2022. doi: 10.14710/ijred.2022.45799
  2. Numerical investigation of wind-lens combinations for improving aerodynamic performance of an elliptical-bladed Savonius wind turbine

    Ahmet Fatih Kaya, Adem Acir, Elif Kaya. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45 (6), 2023. doi: 10.1007/s40430-023-04216-8
  3. Investigation of Performance Enhancements of Savonius Wind Turbines through Additional Designs

    Burcin Deda Altan, Gursel Seha Gultekin. Processes, 11 (5), 2023. doi: 10.3390/pr11051473
  4. A Brief Study on the Implementation of Helical Cross-Flow Hydrokinetic Turbines for Small Scale Power Generation in the Indian SHP Sector

    Jayaram Vijayan, Bavanish Balac Retnam. International Journal of Renewable Energy Development, 11 (3), 2022. doi: 10.14710/ijred.2022.45249
  5. Optimization of a Management Algorithm for an Innovative System of Automatic Switching between Two Photovoltaic and Wind Turbine Modes for an Ecological Production of Green Energy

    Yahya Lahlou, Abdelghani Hajji, Mohammed Aggour. International Journal of Renewable Energy Development, 12 (1), 2023. doi: 10.14710/ijred.2023.47137
  6. Aerodynamic analysis of a 2-stage elliptical-bladed Savonius wind rotor: Numerical simulation and experimental validation

    Umesh K. Patel, Nur Alom, Ujjwal K. Saha. International Journal of Green Energy, 21 (1), 2024. doi: 10.1080/15435075.2023.2194975
  7. Performance analysis of Savonius wind turbines in different models

    Ayse Simsek, Suleyman Teksin, Selahaddin Orhan Akansu, Yahya Erkan Akansu. Wind Engineering, 46 (5), 2022. doi: 10.1177/0309524X221082320
  8. Enhancement of the performance of vertical axis wind rotors with straight blades

    Burcin DEDA ALTAN. European Mechanical Science, 7 (2), 2023. doi: 10.26701/ems.1246352
  9. Recent Progress in Design and Performance Analysis of Vertical-Axis Wind Turbines—A Comprehensive Review

    Djamal Hissein Didane, Mostafa Radwan Behery, Mohanad Al-Ghriybah, Bukhari Manshoor. Processes, 12 (6), 2024. doi: 10.3390/pr12061094
  10. CFD analysis of key factors impacting the aerodynamic performance of the S830 wind turbine airfoil

    Le Thi Tuyet Nhung, Nguyen Van Y, Dinh Cong Truong, Vu Dinh Quy. International Journal of Renewable Energy Development, 13 (6), 2024. doi: 10.61435/ijred.2024.60249
  11. Unsteady-state numerical analysis of advanced Savonius wind turbine

    Mohammad Pourhoseinian, Seyedmehdi Sharifian, Neda Asasian-Kolur. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020. doi: 10.1080/15567036.2020.1859011

Last update: 2024-11-23 10:03:32

  1. Unsteady-state numerical analysis of advanced Savonius wind turbine

    Mohammad Pourhoseinian, Seyedmehdi Sharifian, Neda Asasian-Kolur. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020. doi: 10.1080/15567036.2020.1859011