Residential Air Conditioning System Integrated with Packed Bed Cool Storage Unit for Promoting Rooftop Solar PV Power Generation


Article Metrics:
- Adhikari R.S, Aste N, Manfren M, Marini D,(2012) Energy savings through variable speed compressor heat pump systems, Energy Procedia, 14, 1337–1342: https://doi.org/10.1016/j.egypro.2011.12.1098
- Aljehani A, Ali S, Razack K, Nitsche, L, Al-Hallaj, S. (2018) Design and optimization of a hybrid air-conditioning system with thermal energy storage using phase change composite. Energy Convers Manag., 169, 404–18; https://doi.org/10.1016/j.enconman.2018.05.040
- Arcuri.B, Spataru.C,,Barrett.M. (2017).Evaluation of ice-thermal energy storage ( ITES ) for commercial buildings in cities in Brazil,.Sustain.Cities.Soc.,29,17192: https://doi.org/10.1016/j.scs.2016.12.011
- Bédécarrats J.P., Lasvignottes J.C., Strub F., Dumas J.P., (2009). A Study of a phase change energy storage using spherical capsules. Part I : Experimental results. Energy Convers. Mgmt.50(10),2527–2536: https://doi.org/10.1016/j.enconman.2009.06.004
- Boonnasa S, Namprakai P. (2010) The chilled water storage analysis for a university building cooling system. Appl. Therm. Eng., 30(11-12), 1396-1408; https://doi.org/10.1016/j.applthermaleng.2010.02.029
- Chandrasekaran P, Cheralathan M, Kumaresan V, (2014) Enhanced heat transfer characteristics of water-based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy-efficient cool thermal storage unit. Energy 72, 636–642; https://doi.org/10.1016/j.energy.2014.05.089
- Chen S.L., Yue J. S., (1991). Thermal Performance of Cool Storage in Packed Capsules for Air Conditioning, Heat Recovery Syst CHP, 11(6), 551–561: https://doi.org/10.1016/0890-4332(91)90057-B
- Cheralathan M, Velraj R, Renganarayanan S. (2007) Performance analysis on industrial refrigeration system integrated with encapsulated PCM-based cool thermal energy storage unit. Int J Energy Res .,1398–413; https://doi.org/10.1002/er.1313
- Falco M De, Capocelli M, Losito G, (2017) LCA perspective to assess the environmental impact of a novel PCM- based cold storage unit for the civil air-conditioning. J Clean Prod 165, 697–704; https://doi.org/10.1016/j.jclepro.2017.07.153
- Falco M De, Capocelli M, Giannattasio A. (2016) Performance analysis of an innovative PCM-based device for cold storage in the civil air-conditioning. Energy Build 122, 1–10; https://doi.org/10.1016/j.enbuild.2016.04.016
- Kumaresan V, Chandrasekaran P, Nanda M, Maini, A.K, Velraj, R, (2013) Role of PCM based nanofluids for energy-efficient cool thermal storage unit. Int J Refrig 36, 1641–1647; https://doi.org/10.1016/j.ijrefrig.2013.04.010
- Lin H, Li X, Cheng P, Xu, B.G. (2013) A New Air-conditioning System with Chilled Water Storage.Applied Mechanics and Materials.296.48; https://doi.org/10.4028/www.scientific.net/AMM.405-408.2964
- Lin H, Li X, Cheng P, (2014). Study on chilled energy storage of air-conditioning system with energy-saving. Energy Build. 79,41-46; https://doi.org/10.1016/j.enbuild.2014.04.047
- Luo N , Hong T, Jia H, Li,R, Weng W, (2017). Data analytics and optimization of an ice-based energy storage system for commercial buildings, Appl. Energy, 204, 459–475: https://doi.org/10.1016/j.apenergy.2017.07.048
- Mosaffa AH, Garousi FL, Infante FCA, (2014) Advanced exergy analysis of an air-conditioning system incorporating thermal energystorage. Energy,77, 945-952: https://doi.org/10.1016/j.energy.2014.10.006
- Patil V.R, Birada V.I, Shreyas R, Garg P, Orosz M.S, Thirumalai N.C. (2017), Techno-economic comparison of solar organic Rankine cycle (ORC) and photovoltaic (PV) systems with energy storage, Renew. Energy, 113,1250–1260: https://doi.org/10.1016/j.renene.2017.06.107
- Pina.E.A, Lozano.M.A, Serra.L.M. (2018), Allocation of economic costs in trigeneration systems at variable load conditions including renewable energy sources and thermal energy storage,Energy. 151,633–646: https://doi.org/10.1016/j.energy.2018.03.083
- Rahdar MH, Emamzadeh A, Ataei A. (2016) A comparative study on PCM and ice thermal energy storage tank for air-conditioning systems in office buildings. Appl. Therm. Eng. 96, 391–96; https://doi.org/10.1016/j.applthermaleng.2015.11.107
- Rivarolo M., Aristo Massardo, A.Greco (2013) Thermo-economic optimization of the impact of renewable generators on poly-generation smart-grids including hot thermal storage, Energy Convers. Manage.,65,83, : http://dx.doi.org/10.1016/j.enconman.2012.09.005
- Rosiek S, Garrido FJB. (2012) Performance evaluation of solar-assisted air-conditioning system with chilled water storage (CIESOL building). Energy Convers. Manag 55, 81-92; https://doi.org/10.1016/j.enconman.2011.10.025
- Sanaye S, Shirazi A. (2013) Thermo-economic optimization of an ice thermal energy storage unit for air-conditioning applications. Energy Build 60, 100–109; https://doi.org/ 10.1016/j.enbuild.2012.12.040
- Sanaye S, Hekmatian M. (2016) Ice thermal energy storage (ITES) for air-conditioning application in full and partial load operatingmodes.IntJRefrig, 66.181–197; https://doi.org/10.1016/j.ijrefrig.2015.10.014
- Song X, Liu L, Zhu T, Chen, S, Cao, Z. (2018). Study of economic feasibility of a compound cool thermal storage unit combining chilled water storage and ice storage. Appl. Therm. Eng 133(25),613-621; https://doi.org/10.1016/j.applthermaleng.2018.01.063
- Velraj R, Cheralathan M, Renganarayanan S. (2006) Energy Management through Encapsulated PCM Based Storage unit for Large Building Air-conditioning Application. Int Energy Journal .7, 253–259;
- Wang, Y., Liang, H., Dinavahi, V. (2019) Stochastic Demand Response under Random Renewable Power Generation in Smart Grid IEEE Power and Energy Society General, August, art.no. 8973824: https://doi.org/10.1109/PESGM40551.2019.8973824
- Zhai XQ, Wang XL, Wang T, Wang, R.Z. (2013) A review on phase change cold storage in air-conditioning system: Materials and applications. Renew Sustain Energy Rev 22, 108–120; https://doi.org/10.1016/j.rser.2013.02.013
- Zhu K, Li X, Campana P.E, Li H, Yan J,(2018). Techno-economic feasibility of integrating energy storage systems in refrigerated warehouses, Appl. Energy, 216,348-357; https://doi.org/10.1016/j.apenergy.2018.01.079
Last update: 2021-03-07 09:59:53
Last update: 2021-03-07 09:59:53

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.