skip to main content

Evaluation of a PV-TEG Hybrid System Configuration for an Improved Energy Output: A Review

1Faculty of Electrical and Electronics Engineering, Universiti Tun Hussein Onn Malaysia, Johor , Malaysia

2Centre for Atmospheric Research, National Space Research and Development Agency, Kogi State University Campus Anyigba, Nigeria

3Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia Johor, Malaysia

4 Faculty of Electrical and Electronics Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia

5 Tuanku Syed Sirajuddin Polytechnic, Perlis, Malaysia

View all affiliations
Received: 30 Oct 2020; Revised: 5 Jan 2021; Accepted: 25 Jan 2021; Available online: 1 Feb 2021; Published: 1 May 2021.
Editor(s): Grigorios Kyriakopoulos
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The development of renewable energy, especially solar, is essential for meeting future energy demands. The use of a wide range of the solar spectrum through the solar cells will increase electricity generation and thereby improve energy supply. However, solar photovoltaics (PV) can only convert a portion of the spectrum into electricity. Excess solar radiation is wasted by heat, which decreases solar PV cells’ efficiency and decreases their life span. Interestingly, thermoelectric generators (TEGs) are bidirectional devices that act as heat engines, converting the excess heat into electrical energy through thermoelectric effects through when integrated with a PV. These generators also enhance device efficiency and reduce the amount of heat that solar cells dissipate. Several experiments have been carried out to improve the hybrid PV-TEG system efficiency, and some are still underway. In the present study, the photovoltaic and thermoelectric theories are reviewed. Furthermore, different hybrid system integration methods and experimental and numerical investigations in improving the efficiency of PV-TEG hybrid systems are also discussed. This paper also assesses the effect of critical parameters of PV-TEG performance and highlights possible future research topics to enhancing the literature on photovoltaic-thermoelectric generator systems.
Fulltext View|Download
Keywords: Photovoltaic; Thermoelectric Generator; Hybrid Photovoltaic-thermoelectric Generator system; Shingle; Sandwich
Funding: Muhammad Akmal, Universiti Tun Hussein Onn Malaysia

Article Metrics:

  1. Acut, R. V. P., Hora, J. A., Gerasta, O. J. L., Zhu, X., & Dutkiewicz, E. (2019). PV-TEG- WiFi multiple sources design energy harvesting system for WSN application. 2019 4th IEEE International Circuits and Systems Symposium, ICSyS 2019, 4–8. https://doi.org/10.1109/ICSyS47076.2019.8982439
  2. Akashah, W., Jamaludin, W., & Johar, M. A. (2019). Temperature analysis of concrete shingle thermal behavior under feasibility study of concrete shingle as renewable energy. 1–5
  3. Al Musleh, M., Topriska, E. V., Jenkins, D., & Owens, E. (2020). Thermoelectric generator characterisation at the extra-low-temperature difference for building applications in scorching climates: Experimental and numerical study. Energy and Buildings, 225, 110285. https://doi.org/10.1016/j.enbuild.2020.110285
  4. Aljaghtham, M., & Celik, E. (2020). Design optimisation of oil pan thermoelectric generator to recover waste heat from internal combustion engines. Energy, 200, 117547. https://doi.org/10.1016/j.energy.2020.117547
  5. Amaral, C., Brandão, C., Sempels, É. V., & Lesage, F. J. (2014). Thermoelectric power enhancement through flow impedance for fixed thermal input conditions. Journal of Power Sources, 272, 672–680. https://doi.org/10.1016/j.jpowsour.2014.09.003
  6. Aravind, B., Khandelwal, B., Ramakrishna, P. A., & Kumar, S. (2020). Towards the development of a high power density, high efficiency, micropower generator. Applied Energy, 261 (December 2019), 114386. https://doi.org/10.1016/j.apenergy.2019.114386
  7. Babu, C., & Ponnambalam, P. (2017). The role of thermoelectric generators in the hybrid PV/T systems: A review. Energy Conversion and Management, 151(August), 368–385. https://doi.org/10.1016/j.enconman.2017.08.060
  8. Babu, C., & Ponnambalam, P. (2018). The theoretical performance evaluation of hybrid PV-TEG system. Energy Conversion and Management, 173(August), 450–460. https://doi.org/10.1016/j.enconman.2018.07.104
  9. Bjørk, R., & Nielsen, K. K. (2018). The maximum theoretical performance of unconcentrated solar photovoltaic and thermoelectric generator systems. Energy Conversion and Management, 156(September 2017), 264–268. https://doi.org/10.1016/j.enconman.2017.11.009
  10. Cai, Y., Wang, L., Wang, W. W., Liu, D., & Zhao, F. Y. (2020). Solar energy harvesting potential of a photovoltaic-thermoelectric cooling and power generation system: Bidirectional modelling and performance optimisation. Journal of Cleaner Production, 254, 120150. https://doi.org/10.1016/j.jclepro.2020.120150
  11. Cai, Y., Wang, W. W., Liu, C. W., Ding, W. T., Liu, D., & Zhao, F. Y. (2020). Performance evaluation of a thermoelectric ventilation system driven by the concentrated photovoltaic, thermoelectric generators for green building operations. Renewable Energy, 147, 1565–1583. https://doi.org/10.1016/j.renene.2019.09.090
  12. Cai, Y., Wang, Y., Liu, D., & Zhao, F. Y. (2019). Thermoelectric cooling technology applied in electronic devices: An updated review of the parametric investigations and model developments. Applied Thermal Engineering, 148(April 2018), 238–255. https://doi.org/10.1016/j.applthermaleng.2018.11.014
  13. Chávez-Urbiola, E. A., Vorobiev, Y. V., & Bulat, L. P. (2012). Solar hybrid systems with thermoelectric generators. Solar Energy, 86(1), 369–378. https://doi.org/10.1016/j.solener.2011.10.020
  14. Coskun, C., Toygar, U., Sarpdag, O., & Oktay, Z. (2017). Sensitivity analysis of implicit correlations for photovoltaic module temperature: A review. Journal of Cleaner Production, 164, 1474–1485. https://doi.org/10.1016/j.jclepro.2017.07.080
  15. Cui, T., Xuan, Y., & Li, Q. (2016). Design of a novel concentrating photovoltaic-thermoelectric system incorporated with phase change materials. Energy Conversion and Management, 112, 49–60. https://doi.org/10.1016/j.enconman.2016.01.008
  16. Daghigh, R., & Khaledian, Y. (2018). A novel photovoltaic/thermoelectric collector combined with a dual – Evaporator vapour compression system. Energy Conversion and Management, 158(October 2017), 156–167. https://doi.org/10.1016/j.enconman.2017.12.067
  17. Dallan, B. S., Schumann, J., & Lesage, F. J. (2015). Performance evaluation of a photoelectric-thermoelectric cogeneration hybrid system. Solar Energy, 118, 276–285. https://doi.org/10.1016/j.solener.2015.05.034
  18. Elsarrag, E., Pernau, H., Heuer, J., Roshan, N., Alhorr, Y., & Bartholomé, K. (2015). Spectrum splitting for efficient utilisation of solar radiation: a novel photovoltaic–thermoelectric power generation system. Renewables: Wind, Water, and Solar, 2(1). https://doi.org/10.1186/s40807-015-0016-y
  19. Fisac, M., Villasevil, F. X., & López, A. M. (2014). High-efficiency photovoltaic technology, including thermoelectric generation. Journal of Power Sources, 252, 264–269. https://doi.org/10.1016/j.jpowsour.2013.11.121
  20. Goldsmid, H. J., Giutronich, J. E., & Kaila, M. M. (1980). Solar thermoelectric generation using bismuth telluride alloys. Solar Energy, 24(5), 435–440. https://doi.org/10.1016/0038-092X(80)90311-4
  21. Grubišić-Čabo, F., Nižetić, S., & Marco, T. G. (2016). Photovoltaic panels: A review of the cooling techniques. Transactions of Famine, 40(June), 63–74
  22. Gu, W., Ma, T., Song, A., Li, M., & Shen, L. (2019). Mathematical modelling and performance evaluation of a hybrid photovoltaic-thermoelectric system. Energy Conversion and Management, 198(July), 111800. https://doi.org/10.1016/j.enconman.2019.111800
  23. Hajji, M., Labrim, H., Benaissa, M., Laazizi, A., Ez-Zahraouy, H., Ntsoenzok, E., Meot, J., & Benyoussef, A. (2017). Photovoltaic and thermoelectric indirect coupling for maximum solar energy exploitation. Energy Conversion and Management, 136, 184–191. https://doi.org/10.1016/j.enconman.2016.12.088
  24. Hamid Elsheikh, M., Shnawah, D. A., Sabri, M. F. M., Said, S. B. M., Haji Hassan, M., Ali Bashir, M. B., & Mohamad, M. (2014). A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renewable and Sustainable Energy Reviews, 30, 337–355. https://doi.org/10.1016/j.rser.2013.10.027
  25. Hashim, H., Bomphrey, J. J., & Min, G. (2016). Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system. Renewable Energy, 87, 458–463. https://doi.org/10.1016/j.renene.2015.10.029
  26. Hoang, T. V., Ifaei, P., Nam, K., Rashidi, J., Hwangbo, S., Oh, J. M., & Yoo, C. K. (2018). Optimal management of a hybrid renewable energy system coupled with a membrane bioreactor using enviro-economic and power pinch analyses for sustainable climate change adaption. Sustainability (Switzerland), 11(1). https://doi.org/10.3390/su11010066
  27. Huen, P., & Daoud, W. A. (2017a). Advances in hybrid solar photovoltaic and thermoelectric generators. Renewable and Sustainable Energy Reviews, 72(September), 1295–1302. https://doi.org/10.1016/j.rser.2016.10.042
  28. Huen, P., & Daoud, W. A. (2017b). Advances in hybrid solar photovoltaic and thermoelectric generators. Renewable and Sustainable Energy Reviews, 72(October), 1295–1302. https://doi.org/10.1016/j.rser.2016.10.042
  29. Jatoi, A. R., Samo, S. R., & Jakhrani, A. Q. (2018). Influence of temperature on electrical characteristics of different photovoltaic module technologies. International Journal of Renewable Energy Development, 7(2), 85–91. https://doi.org/10.14710/ijred.7.2.85-91
  30. Javed, K., Ashfaq, H., & Singh, R. (2018). An improved MPPT algorithm to minimise transient and steady-state oscillation conditions for small SPV systems. International Journal of Renewable Energy Development, 7(3), 191–197. https://doi.org/10.14710/ijred.7.3.191-197
  31. Johar, M. A., Yahaya, Z., Marwah, O. M. F., Jamaludin, W. A. W., & Ribuan, M. N. (2017). Feasibility study of thermal electric generator configurations as renewable energy sources. Journal of Physics: Conference Series, 914(1). https://doi.org/10.1088/1742-6596/914/1/012024
  32. Ju, X., Wang, Z., Flamant, G., Li, P., & Zhao, W. (2012). Numerical analysis and optimisation of a spectrum splitting concentration photovoltaic-thermoelectric hybrid system. Solar Energy, 86(6), 1941–1954. https://doi.org/10.1016/j.solener.2012.02.024
  33. Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K. H. (2018). Solar energy: Potential and prospects. Renewable and Sustainable Energy Reviews, 82(August 2017), 894–900. https://doi.org/10.1016/j.rser.2017.09.094
  34. Karami Lakeh, H., Kaatuzian, H., & Hosseini, R. (2019). A parametrical study on the photo-electro-thermal performance of an integrated thermoelectric-photovoltaic cell. Renewable Energy, 138, 542–550. https://doi.org/10.1016/j.renene.2019.01.094
  35. Keser, O. F., Idare, B., Bulat, B., & Okan, A. (2019). The usability of PV-TEG hybrid systems on space platforms. Proceedings of 9th International Conference on Recent Advances in Space Technologies, RAST 2019, 109–115. https://doi.org/10.1109/RAST.2019.8767785
  36. Khanmohammadi, S., Musharavati, F., Kizilkan, O., & Duc Nguyen, D. (2020). Proposal of a new parabolic solar collector assisted power-refrigeration system integrated with a thermoelectric generator using 3E analyses: Energy, exergy, and energy-economic. Energy Conversion and Management, 220(June), 113055. https://doi.org/10.1016/j.enconman.2020.113055
  37. Kil, T. H., Kim, S., Jeong, D. H., Geum, D. M., Lee, S., Jung, S. J., Kim, S., Park, C., Kim, J. S., Baik, J. M., Lee, K. S., Kim, C. Z., Choi, W. J., & Baek, S. H. (2017). A highly-efficient, concentrating-photovoltaic/thermoelectric hybrid generator. Nano Energy, 37, 242–247. https://doi.org/10.1016/j.nanoen.2017.05.023
  38. Krishna Kumar, T. S., Anil Kumar, S., Kodanda Ram, K., Raj Goli, K., & Siva Prasad, V. (2020). Analysis of thermoelectric generators in automobile applications. Materials Today: Proceedings, XXXX. https://doi.org/10.1016/j.matpr.2020.08.081
  39. Kusch-Brandt. (, 2019). Urban renewable energy on the upswing: A spotlight on renewable energy in cities in REN21's "Renewables 2019 Global Status Report." In REN21 RENEWABLES NOW (Vol. 8, Issue 3). https://doi.org/10.3390/resources8030139
  40. Lamba, R., & Kaushik, S. C. (2016). Modelling and performance analysis of a concentrated photovoltaic-thermoelectric hybrid power generation system. Energy Conversion and Management, 115, 288–298. https://doi.org/10.1016/j.enconman.2016.02.061
  41. Lamba, R., & Kaushik, S. C. (2018). Solar driven concentrated photovoltaic-thermoelectric hybrid system: Numerical analysis and optimisation. Energy Conversion and Management, 170(January), 34–49. https://doi.org/10.1016/j.enconman.2018.05.048
  42. Li, G., Shittu, S., Ma, X., & Zhao, X. (2019). Comparative analysis of thermoelectric elements optimum geometry between photovoltaic-thermoelectric and solar thermoelectric. Energy, 171, 599–610. https://doi.org/10.1016/j.energy.2019.01.057
  43. Li, G., Shittu, S., Zhou, K., Zhao, X., & Ma, X. (2019). Preliminary experiment on a novel photovoltaic-thermoelectric system in summer. Energy, 188, 116041. https://doi.org/10.1016/j.energy.2019.116041
  44. Li, G., Zhao, X., & Ji, J. (2016). Conceptual development of a novel photovoltaic-thermoelectric system and preliminary economic analysis. Energy Conversion and Management, 126, 935–943. https://doi.org/10.1016/j.enconman.2016.08.074
  45. Li, J. F., Liu, W. S., Zhao, L. D., & Zhou, M. (2010). High-performance nanostructured thermoelectric materials. NPG Asia Materials, 2(4), 152–158. https://doi.org/10.1038/asiamat.2010.138
  46. Lin, W., Shih, T. M., Zheng, J. C., Zhang, Y., & Chen, J. (2014). Coupling of temperatures and power outputs in hybrid photovoltaic and thermoelectric modules. International Journal of Heat and Mass Transfer, 74, 121–127. https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.075
  47. Lineykin, S., Sitbon, M., & Kuperman, A. (2020). Design and optimisation of low-temperature gradient thermoelectric harvester for wireless sensor network node on water pipelines. Applied Energy, November, 116240. https://doi.org/10.1016/j.apenergy.2020.116240
  48. Liu, J., Tang, H., Zhang, D., Jiao, S., Zhou, Z., Zhang, Z., Ling, J., & Zuo, J. (2020). Performance evaluation of the hybrid photovoltaic-thermoelectric system with light and heat management. Energy, 211, 118618. https://doi.org/10.1016/j.energy.2020.118618
  49. Looi, K. K., Baheta, A. T., & Habib, K. (2020). Investigation of photovoltaic, thermoelectric air-conditioning system for room application under tropical climate. Journal of Mechanical Science and Technology, 34(5), 2199–2205. https://doi.org/10.1007/s12206-020-0441-8
  50. Lund, A., Tian, Y., Darabi, S., & Müller, C. (2020). A polymer-based textile thermoelectric generator for wearable energy harvesting. Journal of Power Sources, 480(September), 228836. https://doi.org/10.1016/j.jpowsour.2020.228836
  51. Luo, Y., Zhang, L., Liu, Z., Yu, J., Xu, X., & Su, X. (2020). Towards net-zero energy building: The application potential and adaptability of a photovoltaic-thermoelectric-battery wall system. Applied Energy, 258(October 2019), 114066. https://doi.org/10.1016/j.apenergy.2019.114066
  52. Mahmoudinezhad, S., Rezania, A., Cotfas, D. T., Cotfas, P. A., & Rosendahl, L. A. (2018). Experimental and numerical investigation of hybrid concentrated photovoltaic – Thermoelectric module under low solar concentration. Energy, 159, 1123–1131. https://doi.org/10.1016/j.energy.2018.06.181
  53. Makki, A., Omer, S., Su, Y., & Sabir, H. (2016). Numerical investigation of heat pipe-based photovoltaic-thermoelectric generator (HP-PV/TEG) hybrid system. Energy Conversion and Management, 112, 274–287. https://doi.org/10.1016/j.enconman.2015.12.069
  54. Mirzakhanyan, A. (2005). Economic and social development. The Armenians: Past and Present in the Making of National Identity, 3(June), 196–210. https://doi.org/10.4324/9780203004937
  55. Mohammad, A. N. M., Radzi, M. A. M., Azis, N., Shafie, S., & Zainuri, M. A. A. M. (2020). A novel hybrid approach for maximising the extracted photovoltaic power under complex partial shading conditions. Applied Sciences (Switzerland), 12(14), 1–24. https://doi.org/10.3390/su12145786
  56. Mohammadnia, A., Rezania, A., Ziapour, B. M., Sedaghati, F., & Rosendahl, L. (2020a). Hybrid energy harvesting system to maximise power generation from solar energy. Energy Conversion and Management, 205(December 2019), 112352. https://doi.org/10.1016/j.enconman.2019.112352
  57. Mohammadnia, A., Rezania, A., Ziapour, B. M., Sedaghati, F., & Rosendahl, L. (2020b). Hybrid energy harvesting system to maximise power generation from solar energy. Energy Conversion and Management, 205(November 2019), 112352. https://doi.org/10.1016/j.enconman.2019.112352
  58. Motiei, P., Yaghoubi, M., & GoshtasbiRad, E. (2019). Transient simulation of a hybrid photovoltaic-thermoelectric system using a phase change material. Sustainable Energy Technologies and Assessments, 34(October 2018), 200–213. https://doi.org/10.1016/j.seta.2019.05.004
  59. Mustofa, Djafar, Z., Syafaruddin, & Piarah, W. H. (2018). A new hybrid of a photovoltaic-thermoelectric generator with hot mirror as spectrum splitter. Journal of Physical Science, 29, 63–75. https://doi.org/10.21315/jps2018.29.s2.6
  60. Nižetić, S., Marinić-Kragić, I., Grubišić-Čabo, F., Papadopoulos, A. M., & Xie, G. (2020). Analysis of novel passive cooling strategies for free-standing silicon photovoltaic panels. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-020-09410-7
  61. Patel, V. R., & Patel, M. C. (2020). Automobile waste heat recovery system using thermoelectric generator. Journal of Science and Technology, 5(3), 58–61. https://doi.org/10.46243/jst.2020.v5.i3.pp58-61
  62. Premkumar, M., Kumar, C., & Sowmya, R. (2020). Mathematical modelling of solar photovoltaic cell/panel/array based on the physical parameters from the manufacturer's datasheet. International Journal of Renewable Energy Development, 9(1), 7–22. https://doi.org/10.14710/ijred.9.1.7-22
  63. Rejeb, O., Shittu, S., Ghenai, C., Li, G., Zhao, X., & Bettayeb, M. (2020). Optimisation and performance analysis of a concentrated solar photovoltaic-thermoelectric (CPV-TE) hybrid system. Renewable Energy, 152, 1342–1353. https://doi.org/10.1016/j.renene.2020.02.007
  64. Rezania, A., & Rosendahl, L. A. (2017). Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system. Applied Energy, 187, 380–389. https://doi.org/10.1016/j.apenergy.2016.11.064
  65. Rodrigo, P. M., Valera, A., Fernández, E. F., & Almonacid, F. M. (2019). Performance and economic limits of passively cooled hybrid thermoelectric generator-concentrator photovoltaic modules. Applied Energy, 238(October 2018), 1150–1162. https://doi.org/10.1016/j.apenergy.2019.01.132
  66. Rostamzadeh, H., & Nourani, P. (2019). Investigating potential benefits of a salinity gradient solar pond for ejector refrigeration cycle coupled with a thermoelectric generator. Energy, 172, 675–690. https://doi.org/10.1016/j.energy.2019.01.167
  67. Sahin, A. Z., Ismaila, K. G., Yilbas, B. S., & Al-Sharafi, A. (2020). A review of the performance of photovoltaic/thermoelectric hybrid generators. International Journal of Energy Research, December 2019, 1–30. https://doi.org/10.1002/er.5139
  68. Sark, W. G. J. H. M. VA. (2011). Feasibility of photovoltaic - Thermoelectric hybrid modules. Applied Energy, 88(8), 2785–2790. https://doi.org/10.1016/j.apenergy.2011.02.008
  69. Shatar, N. M., Rahman, M. A. A., Muhtazaruddin, M. N., Salim, S. A. Z. S., Singh, B., Muhammad-Sukki, F., Bani, N. A., Saudi, A. S. M., & Ardila-Rey, J. A. (2019). Performance evaluation of unconcentrated photovoltaic-thermoelectric generator hybrid system under tropical climate. Sustainability (Switzerland), 11(22). https://doi.org/10.3390/su11226192
  70. Shittu, S., Li, G., Akhlaghi, Y. G., Ma, X., Zhao, X., & Ayodele, E. (2019). Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance. Renewable and Sustainable Energy Reviews, 109(March), 24–54. https://doi.org/10.1016/j.rser.2019.04.023
  71. Shittu, S., Li, G., Zhao, X., Akhlaghi, Y. G., Ma, X., & Yu, M. (2019). Comparative study of a concentrated photovoltaic-thermoelectric system with and without flat plate heat pipe. Energy Conversion and Management, 193(February), 1–14. https://doi.org/10.1016/j.enconman.2019.04.055
  72. Singh, S., Ibeagwu, O. I., & Lamba, R. (2018). Thermodynamic evaluation of irreversibility and optimum performance of a concentrated PV-TEG cogenerated hybrid system. Solar Energy, 170(January), 896–905. https://doi.org/10.1016/j.solener.2018.06.034
  73. Soltani, S., Kasaeian, A., Sokhansefat, T., & Shafii, M. B. (2018). Performance investigation of a hybrid photovoltaic/thermoelectric system integrated with parabolic trough collector. Energy Conversion and Management, 159(September 2017), 371–380. https://doi.org/10.1016/j.enconman.2017.12.091
  74. Wan Jamaludin, W. A., Johar, M. A., Faizan Marwah, O. M., & Amin, A. M. (2020). Evaluation of the potential of renewable thermal energy from shingles using a thermoelectric generator (TEG) for residential use application. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 70(2), 50–58. https://doi.org/10.37934/ARFMTS.70.2.5058
  75. Wang, N., Han, L., He, H., Park, N. H., & Koumoto, K. (2011). A novel high-performance photovoltaic-thermoelectric hybrid device. Energy and Environmental Science, 4(9), 3676–3679. https://doi.org/10.1039/c1ee01646f
  76. Wang, X., Tang, D. S. K., & Henshaw, P. (2020). Mutation particle swarm optimisation (M-PSO) of a thermoelectric generator in a multi-variable space. Energy Conversion and Management, 224(September), 113387. https://doi.org/10.1016/j.enconman.2020.113387
  77. Wu, S. Y., Zhang, Y. C., Xiao, L., & Shen, Z. G. (2018). Performance comparison investigation on the solar photovoltaic-thermoelectric generation and solar photovoltaic-thermoelectric cooling hybrid systems under different conditions. International Journal of Sustainable Energy, 37(6), 533–548. https://doi.org/10.1080/14786451.2017.1345906
  78. Xu, L., Xiong, Y., Mei, A., Hu, Y., Rong, Y., Zhou, Y., Hu, B., & Han, H. (2018). Efficient Perovskite Photovoltaic-Thermoelectric Hybrid Device. Advanced Energy Materials, 8(13), 1–5. https://doi.org/10.1002/aenm.201702937
  79. Yang, Z., Li, W., Chen, X., Su, S., Lin, G., & Chen, J. (2018). Maximum efficiency and parametric optimum selection of a concentrated solar spectrum splitting photovoltaic cell-thermoelectric generator system. Energy Conversion and Management, 174(April), 65–71. https://doi.org/10.1016/j.enconman.2018.08.038
  80. Yin, E., & Li, Q. (2020). Unsteady-state performance comparison of the tandem photovoltaic-thermoelectric hybrid system and a conventional photovoltaic system. Solar Energy, 211(September), 147–157. https://doi.org/10.1016/j.solener.2020.09.049
  81. Yin, E., Li, Q., Li, D., & Xuan, Y. (2019). Experimental investigation on the effects of thermal resistances on a photovoltaic-thermoelectric system integrated with phase change materials. Energy, 169, 172–185. https://doi.org/10.1016/j.energy.2018.12.035
  82. Yin, E., Li, Q., & Xuan, Y. (2018a). One-day performance evaluation of the photovoltaic-thermoelectric hybrid system. Energy, 143, 337–346. https://doi.org/10.1016/j.energy.2017.11.011
  83. Yin, E., Li, Q., & Xuan, Y. (2018b). Optimal design method for concentrating photovoltaic-thermoelectric hybrid system. Applied Energy, 226(January), 320–329. https://doi.org/10.1016/j.apenergy.2018.05.127
  84. Yin, E., Li, Q., & Xuan, Y. (2019). Experimental optimisation of operating conditions for concentrating photovoltaic-thermoelectric hybrid system. Journal of Power Sources, 422(February), 25–32. https://doi.org/10.1016/j.jpowsour.2019.03.034
  85. Yin, E., Li, Q., & Xuan, Y. (2020). Feasibility analysis of a tandem photovoltaic-thermoelectric hybrid system under solar concentration. Renewable Energy, 162, 1828–1841. https://doi.org/10.1016/j.renene.2020.10.006
  86. Yuan, Z., Liu, K., Xu, Z., Wang, H., Liu, Y., & Tang, X. (2020). Development of micro-radioisotope thermoelectric power supply for deep space exploration distributed wireless sensor network. Advances in Astronautics Science and Technology. https://doi.org/10.1007/s42423-020-00062-1
  87. Zhang, Jia, Zhai, H., Wu, Z., Wang, Y., & Xie, H. (2020). Experimental investigation of novel integrated photovoltaic-thermoelectric hybrid devices with enhanced performance. Solar Energy Materials and Solar Cells, 215(June), 110666. https://doi.org/10.1016/j.solmat.2020.110666
  88. Zhang, Jin, Xuan, Y., & Yang, L. (2014). Performance estimation of photovoltaic-thermoelectric hybrid systems. Energy, 78, 895–903. https://doi.org/10.1016/j.energy.2014.10.087
  89. Zhou, Z., Yang, J., Jiang, Q., Li, W., Luo, Y., Hou, Y., Zhou, S., & Li, X. (2016). Considerable improvement of device performance by a synergistic effect of Photovoltaics and thermoelectrics. Nano Energy, 22, 120–128. https://doi.org/10.1016/j.nanoen.2016.02.018

Last update:

  1. Fotovoltaik-Termoelektrik Hibrit Güç Üretim Sistemlerinde Son Gelişmeler

    Cihan DEMİRCAN, Ali KEÇEBAŞ, Hilmi BAYRAKÇI. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11 (3), 2023. doi: 10.29130/dubited.1074371
  2. A BP-IPSO Algorithm Suitable for Centralized Thermoelectric Generation System Power Tracking under Nonuniform Temperature Distribution

    Qian Du, Yan Chen, Xiao Yang, Xinying He, D. P. Rai. International Journal of Energy Research, 2023 , 2023. doi: 10.1155/2023/9040639
  3. Performance Enhancement of Photovoltaic-Thermoelectric Generator Hybrid Model Using Fresnel Lens

    Pallavi Roy, Bani Kanta Talukdar, Snigdha Roy Chowdhury, Galaxina Choudhury, Snigdha Borah. 2023 3rd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), 2023. doi: 10.1109/ICEFEET59656.2023.10452221
  4. Performance of the Hybrid Photovoltaic-Thermoelectric Generator (PV-TEG) System under Malaysian Weather Conditions

    Umar Abubakar Saleh, Siti. Amely. Jumaat, Muhammad Akmal Johar, Wan AkashaWan Jamaluddin. 2021 IEEE Conference on Energy Conversion (CENCON), 2021. doi: 10.1109/CENCON51869.2021.9627257
  5. Parabolic Mirror‐Assisted Thermoelectric and Radiative Cooling System for Maximizing Power Generation Utilizing Solar and Outer Space Thermodynamic Resources

    Ik Hoon Jeong, Sang Wook Park, Min Seong Kim, June Tae Kim, Gil Ju Lee. Advanced Materials Interfaces, 10 (32), 2023. doi: 10.1002/admi.202300573
  6. Micro/Nanomaterials for Heat Transfer, Energy Storage and Conversion

    Ming-Jian He, Ya-Song Sun, Zhao-Long Wang, Bo-Xiang Wang. Coatings, 13 (1), 2022. doi: 10.3390/coatings13010011
  7. Critical analysis of optimized energy harvesting at small-scale by thermally coupled photovoltaic-thermoelectric systems

    M. Huq, A.M. Jasi, P. Poure, S. Jovanovic, I. Revol, B. Lenoir. Renewable and Sustainable Energy Reviews, 195 , 2024. doi: 10.1016/j.rser.2024.114331
  8. Floating power plant applications for electric battery using thermoelectric generators (TEG) on solar panels

    E Zein, M Safril, E Sutanto, M I Hamid, M Aziz, F Fahmi. IOP Conference Series: Earth and Environmental Science, 1108 (1), 2022. doi: 10.1088/1755-1315/1108/1/012007
  9. Flexible solar and thermal energy conversion devices: Organic photovoltaics (OPVs), organic thermoelectric generators (OTEGs) and hybrid PV-TEG systems

    Anirudh Sharma, Saeed Masoumi, Desta Gedefaw, Seamus O'Shaughnessy, Derya Baran, Amir Pakdel. Applied Materials Today, 29 , 2022. doi: 10.1016/j.apmt.2022.101614
  10. An Enhancement of the Solar Panel Efficiency: A Comprehensive Review

    R. Parthiban, P. Ponnambalam. Frontiers in Energy Research, 10 , 2022. doi: 10.3389/fenrg.2022.937155
  11. Systematic Literature Review and Benchmarking for Photovoltaic MPPT Techniques

    Hsen Abidi, Lilia Sidhom, Ines Chihi. Energies, 16 (8), 2023. doi: 10.3390/en16083509
  12. Water-Cooled Thermoelectric Generators for Improved Net Output Power: A Review

    Björn Pfeiffelmann, Ali Cemal Benim, Franz Joos. Energies, 14 (24), 2021. doi: 10.3390/en14248329
  13. Experimental study of photovoltaic-thermoelectric generator with graphite sheet

    M. Gopinath, R. Marimuthu. Case Studies in Thermal Engineering, 54 , 2024. doi: 10.1016/j.csite.2024.103982
  14. Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System

    Prabhakar Sharma, Zafar Said, Anurag Kumar, Sandro Nižetić, Ashok Pandey, Anh Tuan Hoang, Zuohua Huang, Asif Afzal, Changhe Li, Anh Tuan Le, Xuan Phuong Nguyen, Viet Dung Tran. Energy & Fuels, 36 (13), 2022. doi: 10.1021/acs.energyfuels.2c01006
  15. Identification some of the temperature related factors affecting hybrid PV- MTEG systems efficiency by experimental methods

    Slawomir Wnuk. 2022 7th International Conference on Environment Friendly Energies and Applications (EFEA), 2022. doi: 10.1109/EFEA56675.2022.10063811
  16. Performance of a photovoltaic-thermoelectric generator panel in combination with various solar tracking systems

    Tri Widodo Besar Riyadi, Marwan Effendy, Bagus Radiant Utomo, Agung Tri Wijayanta. Applied Thermal Engineering, 235 , 2023. doi: 10.1016/j.applthermaleng.2023.121336
  17. Graphite sheet assisted photovoltaic -thermoelectric generator for hydrogen generation from seawater

    M. Gopinath, Natarajan Muthuswamy, R. Marimuthu. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46 (1), 2024. doi: 10.1080/15567036.2024.2329349
  18. Photovoltaic-Thermoelectric Generator Monitoring System using Arduino Based Data Acquisition system Technique

    Umar Abubakar Saleh, Siti. Amely. Jumaat, Muhammad Akmal Johar, W. A. W. Jamaludin. 2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), 2021. doi: 10.1109/IICAIET51634.2021.9573815

Last update: 2024-03-29 08:58:24

No citation recorded.