Multi-Objective Optimization Dispatch Based Energy Management of A Microgrid Running Under Grid Connected and Standalone Operation Mode


This paper presents a novel optimization approach for a day-ahead power management and control of a DC microgrid (MG). The multi-objective optimization dispatch (MOOD) problem involves minimizing the overall operating cost, pollutant emission levels of (NOx, SO2 and CO2) and the power loss cost of the conversion devices. The weighted sum method is selected to convert the multi-objective optimization problem into a single optimization problem. Then, analytic hierarchy process (AHP) method is applied to determine the weight coefficients, according to the preference of each objective function. The system’s performance is evaluated under both grid connected and standalone operation mode, considering power balancing, high level penetration of renewable energy, optimal scheduling of charging/discharging of battery storage system, control of load curtailment and the system technical constraints. Ant lion optimizer (ALO) method is considered for handling MOOD, and the performance of the proposed algorithm is compared with other known heuristic optimization techniques. The simulation results prove the effectiveness and the capability of the developed approach to deal better with the coordinated control and optimization dispatch problem.They also revealed that economically running the MG system under grid connected mode can reduce the overall cost by around 4.70% compared to when it is in standalone operation mode.
Article Metrics:
- Aghajani, G., & Ghadimi, N. (2018). Multi-objective energy management in a micro-grid. Energy Reports, 4, 218–225; doi: 10.1016/j.egyr.2017.10.002
- Al-Sakkaf, S., Kassas, M., Khalid, M., & Abido, M. A. (2019). An Energy management system for residential autonomous dc microgrid using optimized fuzzy logic controller considering economic dispatch. Energies, 12, 1-25
- Alazemi, F. Z., & Hatata A. Y. (2019). Ant lion optimizer for optimum economic dispatch considering demand response as a visual power plant. Electric Power Components and Systems; doi: 10.1080/15325008.2019.1602799
- Alvarado-Barrios, L., Rodríguez del Nozal, A., Tapia, A., Martínez-Ramos, J. L., & Reina, D. (2019). An evolutionary computational approach for the problem of unit commitment and economic dispatch in microgrids under several operation modes. Energies, 12, 2143; doi: 10.3390/en12112143
- Augusto, O., Bennis, F., & Caro, S. (2012). A New method for decision making in multi-objective optimization problems. Sociedade Brasileira de Pesquisa Operacional, 32 (2), 331–369
- Contreras, S. F., Cortes, C. A, & Myrzik, J. M. A. (2019). Optimal microgrid planning for enhancing ancillary service provision. Journal of Modern Power Systems and Clean Energy, 7, 862–875; doi: 10.1007/s40565-019-0528-3
- García, P., García, C. A., Fernández, L. M., F. Llorens, & Jurado, F. (2014). ANFIS-based control of a grid-connected hybrid system integrating renewable energies, hydrogen and batteries. IEEE Transactions on Industrial Informatics, 10 (2), 1107-1117; doi: 10.1109/TII.2013.2290069
- Garcia, P., Torreglosa, J. P., Fernandez, L. M., & Jurado, Fr. (2013). Optimal energy management system for standalone wind turbine/photovoltaic/hydrogen/battery hybrid system with supervisory control based on fuzzy logic. International Journal of Hydrogen Energy, 38 (33), 14146-14158; doi: 10.1016/j.ijhydene.2013.08.106
- Hatata, A. Y., & Hafez, A. A. (2019). Ant lion optimizer versus particle swarm and artificial immune system for economical and eco‐friendly power system operation. International Transaction on Electrical Energy Systems; doi: 10.1002/etep.2803
- Jiang, Q., Xue, M., & Geng, G. (2013). Energy management of microgrid in grid-connected and stand-alone modes. IEEE Transactions On Power Systems, 28 (3), 3380-3389; doi: 0.1109/TPWRS.2013.2244104
- Jin, X., Mu, Y., Jia, H., Wu, J., Jiang, T., & Yu, X. (2017). Dynamic economic dispatch of a hybrid energy microgrid considering building based virtual energy storage system. Applied Energy, 194, 386-398; doi: 10.1016/j.apenergy.2016.07.080
- Kamboj, V. K., Bhadoria, A., & Bath, S. K. (2017). Solution of non-convex economic load dispatch problem for small-scale power systems using ant lion optimizer. Neural Computing and Applications, 28, 2181–2192; doi: 10.1007/s00521-015-2148-9
- Karaboga, D., & Akay, B. (2009). A Comparative study of artificial bee colony algorithm. Applied Mathematics and Computation, 214 (1), 108-132; doi: 10.1016/j.amc.2009.03.090
- Kiptoo, M. K., Lotfy, M. E., Adewuyi, O. B., conteh, A., howlader, A. M., & Senjyu, T. (2020). Integrated approach for optimal techno-economic planning for high renewable energy-based isolated microgrid considering cost of energy storage and demand response strategies. Energy Conversion and Management, 215; doi: 10.1016/j.enconman.2020.112917
- Kyriakarakos, G., Dounis, A. I., Arvanitis, K. G., & Papadakis G., (2012). A fuzzy logic energy management system for polygeneration microgrids. Renewable Energy, 41, 315-327; doi: 10.1016/j.renene.2011.11.019
- Lagouir, M., Badri, A., Sayouti, Y. (2019). Development of an intelligent energy management system with economic dispatch of a standalone microgrid. Journal of Electrical Systems, 15 (4) 568-581
- Liu, H., Ji, Y., Zhuang, H., & Wu, H. (2015). Multi-Objective dynamic economic dispatch of microgrid systems including vehicle-to-grid. Energies, 8, 4476-4495. DOI: 10.3390/en8054476
- Meng, X. B., Gao, X. Z., Liu, Y., & Zhang, H. (2015). A novel bat algorithm with habitat selection and doppler effect in echoes for optimization. Expert Systems with Applications, 42 (17-18), 6350-6364; doi: 10.1016/j.eswa.2015.04.026
- Mirjalili, S. (2015). The Ant Lion Optimizer. Advances in Engineering Software, 83, 80–98; doi: 10.1016/j.advengsoft.2015.01.010
- Mohamed, F. A., & Koivo, H. N. (2012). Online management genetic algorithms of microgrid for residential application. Energy Conversion and Management, 64, 562–568; doi: 10.1016/j.enconman.2012.06.010
- Moradi, H., Esfahanian, M., Abtahi, A., & Zilouchian, A. (2018). Optimization and energy management of a standalone hybrid microgrid in the presence of battery storage system. Energy, 147, 226-238; doi: 10.1016/j.energy.2018.01.016
- Murty, V. V. S. N., & Kumar, A. (2020). Multi-objective energy management in microgrids with hybrid energy sources and battery energy storage systems. Protection and Control of Modern Power Systems, 5 (2); doi: 10.1186/s41601-019-0147-z
- Nemati, M., Braun, M., & Tenbohlen, S. (2018). Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming. Applied Energy, 210, 944-963; doi: 10.1016/j.apenergy.2017.07.007
- Nwulu, N. I., & Xia, Xi. (2015). Multi-objective dynamic economic emission dispatch of electric power generation integrated with game theory based demand response programs. Energy Conversion and Management, 89, 963–974; doi: 10.1016/j.enconman.2014.11.001
- Olivares, D. E., Cañizares, C. A., & Kazerani, M., (2011). A Centralized optimal energy management system for microgrids. IEEE Power and Energy Society General Meeting; doi: 10.1109/PES.2011.6039527
- Parisio, A., Rikos, E., & Glielmo, L., (2014). A Model predictive control approach to microgrid operation optimization. IEEE Transactions on Control Systems Technology, 22 (5), 1813-1827; doi: 10.1109/TCST.2013.2295737
- Reddy, S. S. (2017). Optimal power flow with renewable energy resources including storage. Electrical Engineering, 99, 685-695; doi: 10.1007/s00202-016-0402-5
- Reddy, S. S., & Momoh, J. A. (2015). Realistic and transparent optimum scheduling strategy for hybrid power system. IEEE Transactions on Smart Grid, 6 (6), 3114-3125; doi: 10.1109/TSG.2015.2406879
- Shen, J., Jiang, Ch., Liu, Y., & Wang, X. (2016). A Microgrid energy management system and risk management under an electricity market environment. IEEE Access, 4, 2349-2356
- Taha, M. S., Abdeltawab, H., Ha., & Mohamed, Y. A. I. (2018). An Online energy management system for a grid-connected hybrid energy source. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6 (4), 2015 –2030; doi: 10.1109/JESTPE.2018.2828803
- Triantaphyllou, E., & Mann, S. H. (1995). Using the analytic hierarchy process for decision making in engineering applications: some challenges. International Journal of Industrial Engineering: Applications and Practice, 2 (1), 35-44
- Vivas, F. J., Segura, F., Andújar, J. M., Palacio, A., Saenz, J. L., Isorna, F., & López, E. (2020). Multi-objective fuzzy logic-based energy management system for microgrids with battery and hydrogen energy storage system. Electronics, 9 (7), 1074; doi: 10.3390/electronics9071074
- Wang, T., He, X., & Deng, T. (2017). Neural Networks for power management optimal strategy in hybrid microgrid. Neural Computer & Application Journal, 31 (7), 2635-2647
- Wang. Z., Zhu, Q., Huang, M., & Yang, B. (2017). Optimization of economic/environmental operation management for microgrids by using hybrid fireworks algorithm. International Transactions on Electrical Energy Systems, 27 (12); doi: 10.1002/etep.2429
- Wu, H., Liu, X., & Ding, M. (2014). Dynamic economic dispatch of a microgrid: Mathematical models and solution algorithm. Electrical Power and Energy Systems, 63, 336-346; doi: 10.1016/j.ijepes.2014.06.002
- Wu, H., Zhuang, H., Zhang, W., & Ding, M. (2016). Optimal allocation of microgrid considering economic dispatch based on hybrid weighted bilevel planning method and algorithm improvement. Electrical Power and Energy Systems, 75, 28-37; doi: 10.1016/j.ijepes.2015.08.011
- Wu, X., Cao, W., Wang, D., & Ding, M. (2019). Multi-objective optimization dispatch method for microgrid energy management considering the power loss of converters, Energies.12(11), 2160, https://doi.org/10.3390/en12112160
- Yuan, X., Zhang, B., Wang, P., Liang, J., Yuan, Y., Huang, Y., & Lei, X. (2017). Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm. Energy, 122, 70–82; doi: 10.1016/j.energy.2017.01.071
Last update: 2021-02-27 22:41:25
Last update: 2021-02-27 22:41:25

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.