skip to main content

Evaluation and Comparative Study of Cell Balancing Methods for Lithium-Ion Batteries Used in Electric Vehicles

Department of Electrical and Electronics Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India

Received: 20 Nov 2020; Revised: 26 Jan 2021; Accepted: 10 Feb 2021; Available online: 18 Feb 2021; Published: 1 Aug 2021.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Vehicle manufacturers positioned electric vehicles (EVs) and hybrid electric vehicles (HEVs) as reliable, safe and environmental friendly alternative to traditional fuel based vehicles. Charging EVs using renewable energy resources reduce greenhouse emissions. The Lithium-ion (Li-ion) batteries used in EVs are susceptible to failure due to voltage imbalance when connected to form a pack. Hence, it requires a proper balancing system categorised into passive and active systems based on the working principle. It is the prerogative of a battery management system (BMS) designer to choose an appropriate system depending on the application. This study compares and evaluates passive balancing system against widely used inductor based active balancing system in order to select an appropriate balancing scheme addressing battery efficiency and balancing speed for E-vehicle segment (E-bike, E-car and E-truck). The balancing systems are implemented using “top-balancing” algorithm which balance the cells voltages near the end of charge for better accuracy and effective balancing. The most important characteristics of the balancing systems such as degree of imbalance, power loss and temperature variation are determined by their influence on battery performance and cost. To enhance the battery life, Matlab-Simscape simulation-based analysis is performed in order to fine tune the cell balancing system for the optimal usage of the battery pack. For the simulation requirements, the battery model parameters are obtained using least-square fitting algorithm on the data obtained through electro chemical impedance spectroscopy (EIS) test. The achieved balancing time of the passive and active cell balancer for fourteen cells were 48 and 20 min for the voltage deviation of 30 mV. Also, the recorded balancing time was 215 and 42 min for the voltage deviation of 200 mV.

Fulltext View|Download
Keywords: Electric vehicle; Lithium-ion battery; Energy efficiency; Temperature behaviour and Cost analysis

Article Metrics:

  1. Abronzini, U., Di Monaco, M., Porpora, F., Tomasso, G., D'Arpino M., & Attaianese, C. (2019). Thermal Management Optimization of a Passive BMS for Automotive Applications. AEIT International Conference of Electrical and Electronic Technologies for Automotive,1-6; doi: 10.23919/eeta.2019.8804559
  2. Aizpuru, I., Iraola, U., Canales, J.M., Goikoetxea, A., & Garayalde, E. (2017). Comparative Study and Evaluation of Passive Balancing Against Single Switch Active Balancing Systems for Energy Storage Systems. Int. J. Sci. Res, 7(3), 1-9
  3. Amin, Ismail, K., Nugroho, A., & Kaleg, S. (2017). Passive balancing battery management system using MOSFET internal resistance as balancing resistor. 2017 International Conference on Sustainable Energy Engineering and Application, 151-155; doi: 10.1109/icseea.2017.8267701
  4. Andrea, D. (2010). Battery Management Systems for Large Lithium-Ion Battery Packs. Artech House
  5. Campbell, I.D., Gopalakrishnan, K., Marinescu, M., Torchio, M., Offer, G.J., & Raimondo, D. (2019). Optimising lithium-ion cell design for plug-in hybrid and battery electric vehicles. J. Energy Storage, 22, 228–238; doi: 10.1016/j.est.2019.01.006
  6. Carter, J., Fan, Z., & Cao, J. (2020). Cell equalisation circuits: A review. J. Power Sources, 448; doi: 10.1016/j.jpowsour.2019.227489
  7. Caspar, M., Eiler, T., & Hohmann, S. (2018). Systematic Comparison of Active Balancing: A Model-Based Quantitative Analysis. IEEE Trans. Veh. Technol, 67(2), 920-934; doi: 10.1109/tvt.2016.2633499
  8. Cassani, P., & Williamson, S.S. (2009). Feasibility Analysis of a Novel Cell Equalizer Topology for Plug-In Hybrid Electric Vehicle Energy-Storage Systems. IEEE Trans. Veh. Technol, 58, 3938 - 3946. doi: 10.1109/TVT.2009.2031553
  9. Chen, Z., Lu, J., Liu, B., Zhou, N., & Li, S. (2020). Optimal energy management of plug-in hybrid electric vehicles concerning the entire lifespan of lithium-ion batteries. Energies, 13(10), 2543; doi: 10.3390/en13102543
  10. Chol-Ho, K., Moon-Young, K., & Gun-Woo, M. (2013). A modularized charge equalizer using a battery monitoring IC for series-connected Li-Ion battery strings in electric vehicles. IEEE Trans. Power Electron, 28(8), 3779–3787; doi: 10.1109/tpel.2012.2227810
  11. Collin, R., Miao, Y., Yokochi, A., Enjeti, P., & Von Jouanne, A. (2019). Advanced Electric Vehicle Fast-Charging Technologies. Energies, 12(10), 1839; doi: 10.3390/en12101839
  12. Daowd, M., Omar, N., Van den Bossche, P., & Van Mierlo, J. (2011). A Review of Passive and Active Battery Balancing based on MATLAB/Simulink. Int. Rev. Electr Eng, 6(7). 2974-2989
  13. Dong, B., Li, Y., &Han.Y. (2015). Parallel Architecture for Battery Charge Equalization. IEEE Trans. Power Electron, 30(9), 4906-4913; doi: 10.1109/tpel.2014.2364838
  14. Deng, Y., Li, J., Li, T., Zhang, J., Yang, F., & Yuan, C. (2017). Life cycle assessment of high-capacity molybdenum disulfide lithium-ion battery for electric vehicles. Energy, 123, 77-88. doi: 10.1016/j.energy.2017.01.096
  15. Deng, Y., Ma, L., Li, T., Li, J., & Yuan, C. (2019). Life Cycle Assessment of Silicon-Nanotube-Based Lithium-Ion Battery for Electric Vehicles. ACS Sustainable Chemistry and Engineering, 7 (1), 599-610; doi: 10.1021/acssuschemeng.8b04136
  16. Gallardo-Lozano, J., Romero-Cadaval, E., Milanes-Montero, M., & Guerrero-Martinez, M. (2014). Battery equalization active methods. J. Power Sources. 246. 934-949. doi: 10.1016/j.jpowsour.2013.08.026
  17. Hemavathi, S.(2020). Overview of cell balancing methods for Li‐ion battery technology. Energy storage. e203. doi: 10.1002/est2.203
  18. Hoque, M.M., Hannan, M.A., & Mohamed, A. (2015). Voltage equalization for series connected lithium-ion battery cells. IEEE 3rd International conference on smart instrumentation, measurement & Applications. 1-6; doi: 10.1109/icsima.2015.7559015
  19. Hua, Y., Zhou, S., Cui, H., Liu, X., Zhang, C., Xu, X., Ling, H., & Yang, S. (2020). A comprehensive review on inconsistency and equalization technology of lithium-ion battery for electric vehicles. Int. J. Energy Res, 44(14), 11059-11087; doi: 10.1002/er.5683
  20. Jung, C. (2017). Power Up with 800-V Systems: The benefits of upgrading voltage power for battery-electric passenger vehicles. IEEE Electrification Magazine, 5(1), 53-58; doi: 10.1109/mele.2016.2644560
  21. Kim, M., Kim, J., & G. Moon. (2014). Center-Cell Concentration Structure of a Cell-to-Cell Balancing Circuit with a Reduced Number of Switches. IEEE Trans. Power Electron, 29(10),5285-5297; doi: 10.1109/tpel.2013.2292078
  22. Koseoglou, M., Tsioumas, E., Jabbour. N., &Mademlis, C. (2020). Highly Effective Cell Equalization in a Lithium-Ion Battery Management System. IEEE Trans. Power Electron, 35(2), 2088-2099; doi: 10.1109/tpel.2019.2920728
  23. Lee, Y., Jeon, S., & Bae, S. (2016). Comparison on Cell Balancing Methods for Energy Storage Applications. Indian J. Sci. Technol. 9. doi: 10.17485/ijst/2016/v9i17/92316
  24. Lei, B., Zhao, W., Ziebert, C., Uhlmann, N., Rohde, M.,& Seifert, H. (2017). Experimental Analysis of Thermal Runaway in 18650 Cylindrical Li-Ion Cells Using an Accelerating Rate Calorimeter. Batteries,3(4), 14; doi: 10.3390/batteries3020014
  25. Lipu, M.S.H., Hannan, M.A., Hussain, A., Hoque, M.M., Ker, P.J., Saad, M.H.M., & Ayob, A. (2018). A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations. J. Clean. Prod, 205, 115-133; doi: 10.1016/j.jclepro.2018.09.065
  26. Li, W., Chen, S., Peng, X., Xiao, M., Gao, L., Garg, A.,& Bao, N. (2019). A Comprehensive Approach for the Clustering of Similar-Performance Cells for the Design of a Lithium-Ion Battery Module for Electric Vehicles. Engineering, 5(4), 795-802; doi: 10.1016/j.eng.2019.07.005
  27. Ma, Y., Duan, P., Sun, Y., & Chen, H. (2018). Equalization of Lithium-Ion Battery Pack Based on Fuzzy Logic Control in Electric Vehicle. IEEE Trans. Ind. Electron, 65 (8), 6762-6771; doi: 10.1109/tie.2018.2795578
  28. Ma, L., Nie, M., Xia, J., & Dahn, J.R. (2016). A systematic study on the reactivity of different grades of charged Li [NixMnyCoz]O2 with electrolyte at elevated temperatures using accelerating rate calorimetry. J. Power Sources, 327,145–150; doi: 10.1016/j.jpowsour.2016.07.039
  29. Moghaddam, A.F., & Van Den Bossche, A. (2018). An Active Cell Equalization Technique for Lithium Ion Batteries Based on Inductor Balancing. 9th International Conference on Mechanical and Aerospace Engineering (ICMAE), 274-278; doi: 10.1109/icmae.2018.8467685
  30. Moghaddam, A.F., & Van Den Bossche, A. (2019). An efficient equalizing method for lithium-ion batteries based on coupled inductor balancing. Electronics, 8(2), 136; doi: 10.3390/electronics8020136
  31. Narayanaswamy, S., Steinhorst, S., Lukasiewycz, M., Kauer, M., & Chakraborty, S. (2014). Optimal dimensioning of active cell balancing architectures. 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE), 1-6; doi: 10.7873/date.2014.153
  32. Omariba, Z., Zhang, L., & Sun, D. (2018). Review on Health Management System for Lithium-Ion Batteries of Electric Vehicles. Electronics, 7(5), 72; doi: 10.3390/electronics7050072
  33. Omariba, Z., Zhang, L., & Sun, D. (2019). Review of Battery Cell Balancing Methodologies for Optimizing Battery Pack Performance in Electric Vehicles. IEEE Access, 1-1; doi: 10.1109/access.2019.2940090
  34. Phung, T.H., Collet, A., J. Crebier. (2014). An Optimized Topology for Next-to-Next Balancing of Series-Connected Lithium-ion Cells. IEEE Trans. Power Electron, 29(9), 4603-4613; doi: 10.1109/tpel.2013.2284797
  35. Stuart, T., & Zhu, W. (2009). Fast equalization for large lithium-ion batteries. Aerospace and Electronic Systems Magazine, IEEE. 24, 27 – 31; doi: 10.1109/maes.2009.5208557
  36. Thiruvonasundari, D., & Deepa, K. (2020). Active cell balancing for electric vehicle battery management system. Int. J. Power Electron. Drive Syst.11(2), 571-579; doi: 10.11591/ijpeds.v11.i2.pp571-579
  37. Thiruvonasundari, D., & Deepa, K. (2020). Electric Vehicle Battery Modelling Methods Based on State of Charge-Review. J. Green Eng., 10(1), 24-61
  38. Tomaszewska, A., Feng, X., Chu, Z., & O'Kane, S. (2019). Lithium-Ion Battery Fast Charging: A Review. eTransportation, 1; doi: 10.1016/j.etran.2019.100011
  39. Vardhan, R., Thavassy, S., Reginald, R., Sivakumar, P., & Sundaresh, S. (2017). Modeling of single inductor based battery balancing circuit for hybrid electric vehicles. IECON -43rd Annual Conference of the IEEE Industrial Electronics Society, 2293-2298; doi: 10.1109/iecon.2017.8216386
  40. Wager, G., Whale, J., & Braunl, T. (2016). Battery cell balance of electric vehicles under fast-DC charging. Int. J. Electr. Hybrid Veh, 8, 351; doi: 10.1504/ijehv.2016.080732
  41. Wang, S., Kang, L., Guo, X., Wang, Z., &M. Liu. (2017). A Novel Layered Bidirectional Equalizer Based on a Buck-Boost Converter for Series-Connected Battery Strings. Energies, 10(7),1011; doi: 10.3390/en10071011
  42. Xie, J. P., Wei, X. Z., & Dai, H. F. (2011). Inductor-Based Active Balancing of Li-Ion Battery. Appl. Mech. Mater, 80–81, 255–260. doi: 10.4028/www.scientific.net/amm.80-81.255
  43. Xu, J., Mei, X., & Wang, J. (2019). A High Power Low-Cost Balancing System for Battery Strings, Energy Procedia, 158, 2948-2953, doi: 10.1016/j.egypro.2019.01.956
  44. Zheng, Y., Ouyang, M., Han, X., Lu, L., & Li, J. (2018). Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles J. Power Sources, 377, 161-188; doi: 10.1016/j.jpowsour.2017.11.094
  45. Zhou, Z., Duan, B., Shang, Y., & Zhang, C. (2016). An any-cell(s)-to-any-cell(s) equalizer based on bidirectional inductor converters for series connected battery string. 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), 2511-2515; doi: 10.1109/iciea.2016.7604015

Last update:

  1. Proceedings of Congress on Control, Robotics, and Mechatronics

    Vandana Kumari Prajapati, Arya Jha, C. R. Amrutha Varshini, P. V. Manitha. Smart Innovation, Systems and Technologies, 364 , 2024. doi: 10.1007/978-981-99-5180-2_45
  2. Proceedings of the 12th International Conference on Soft Computing for Problem Solving

    K. Karthik, P. Ponnambalam. Lecture Notes in Networks and Systems, 994 , 2024. doi: 10.1007/978-981-97-3180-0_23
  3. A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis

    Nenming Wang, Guwen Tang. Sustainability, 14 (6), 2022. doi: 10.3390/su14063371
  4. Reduced graphene oxide composite aerogels for lithium-ion batteries

    Oznur Kaya Cakmak. Journal of Porous Materials, 29 (6), 2022. doi: 10.1007/s10934-022-01293-3
  5. Modular Lithium-Ion Cell Battery Management System with High Current Balancing

    Bernardo Faustino, Nuno Vieira Lopes, Diogo Costa, Helder Santos, Joel Vasco, Carlos Capela, Carlos Rabadão, Carlos Ferreira. 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), 2023. doi: 10.1109/ICECCME57830.2023.10252714
  6. Development of Hybrid PV Wind system for EVs with Battery Management System

    B. Tejesh, B. S. Ganesh Charan, Ch. Murali Krishna, Manitha P. V. 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), 2022. doi: 10.1109/ICAECT54875.2022.9808062
  7. Proceedings of the UNIfied Conference of DAMAS, IncoME and TEPEN Conferences (UNIfied 2023)

    Jens Rau, Heng Wei Zhang, Valentin Bischof, Karsten Schmidt. Mechanisms and Machine Science, 152 , 2024. doi: 10.1007/978-3-031-49421-5_31
  8. A Comparative Analysis of Power Generation Using Solar and Fuel Cell for Charging EVs

    B Tejesh, G Udaya Baskar, B Nanda Krishna, K. Deepa, P.V Manitha, V. Sailaja. 2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON), 2022. doi: 10.1109/PECCON55017.2022.9851087
  9. Analyzing the mechanism of performance improvement in LiNi0.8Co0.1Mn0.1O2 through coating with LiNbO3 fast ion conductor

    Zhen Li, Yang You, Yue Liu, Jingjun Liu, Jing Peng, Mingliang Yuan. Ceramics International, 50 (17), 2024. doi: 10.1016/j.ceramint.2024.05.347
  10. Utilization of the spent catalyst as a raw material for rechargeable battery production: The effect of leaching time, type, and concentration of organic acids

    Tabita Kristina Mora Ayu Panggabean, Ratna Frida Susanti, Widi Astuti, Himawan Tri Bayu Murti Petrus, Anastasia Prima Kristijarti, Kevin Cleary Wanta. International Journal of Renewable Energy Development, 12 (3), 2023. doi: 10.14710/ijred.2023.51353
  11. Effect of Fast Charging on Lithium-Ion Batteries: A Review

    Ahmed Abd El Baset Abd El Halim, Ehab Hassan Eid Bayoumi, Walid El-Khattam, Amr Mohamed Ibrahim. SAE International Journal of Electrified Vehicles, 12 (3), 2023. doi: 10.4271/14-12-03-0018
  12. A Novel Proportional Integral Controller Based Passive Cell Balancing for Battery Management System

    Shukla Karmakar, Tushar Kanti Bera, Aashish Kumar Bohre. 2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT), 2022. doi: 10.1109/GlobConPT57482.2022.9938330
  13. A Novel Online State of Health Estimation Method for Electric Vehicle Pouch Cells Using Magnetic Field Imaging and Convolution Neural Networks

    Mehrnaz Javadipour, Toshan Wickramanayake, Seyed Amir Alavi, Kamyar Mehran. Electrochem, 3 (4), 2022. doi: 10.3390/electrochem3040051
  14. A Review on Power Electronic Converters for Modular BMS with Active Balancing

    João P. D. Miranda, Luis A. M. Barros, José Gabriel Pinto. Energies, 16 (7), 2023. doi: 10.3390/en16073255
  15. Machine Learning-Based Optimal Cell Balancing Mechanism for Electric Vehicle Battery Management System

    Thiruvonasundari Duraisamy, Deepa Kaliyaperumal. IEEE Access, 9 , 2021. doi: 10.1109/ACCESS.2021.3115255

Last update: 2024-11-20 06:47:21

No citation recorded.