skip to main content

Sustainable Cultivation of Desmodesmus armatus SAG276.4d using Leachate as a Growth Supplement for Simultaneous Biomass Production and CO2 Fixation

1School of Civil Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Faculty of Industrial Science and Technology, College of Computing and Applied Sciences, Universiti Malaysia Pahang, Malaysia, Malaysia

Received: 7 Apr 2021; Revised: 25 May 2021; Accepted: 20 Jun 2021; Available online: 18 Jul 2021; Published: 1 Nov 2021.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Microalgae cultivation has been identified to be highly beneficial for the production of valuable biomass. The recent worldwide interest is to cultivate microalgae in wastewater to replace the use of expensive commercial media. Microalgae can utilize nutrients from the wastewater for their biomass growth, which is useful as feedstock in many products. Interestingly, microalgae cultivation is also capable of reducing a greenhouse gas due to absorption of carbon dioxide (CO2) during photosynthesis. This study was conducted to study the growth of microalgae using leachate as a nutrient supplement. The scope of the research involved the cultivation of freshwater microalgae, Desmodesmus armatus, in the synthetics medium with various percentages of leachate under different light exposures. The growth parameters such as the specific growth rate, biomass productivity, and cell division time were used to evaluate the microalgae growth performance. The amount of CO2 absorbed during the cultivation was determined based on the total biomass production. The highest growth rate of 0.423/day was achieved using a 5% leachate medium under 12 h light duration, and the highest carbon fixation of 1.317 g CO2/L/day was calculated using a culture supplemented with 5% leachate with 24 h light period. The high presence of nutrients in the leachate has contributed to the growth of the microalgae; thus, it has great potential as an alternative growth medium to support biomass production and subsequently help to mitigate global warming.
Fulltext View|Download
Keywords: Microalgae; biomass; Desmodesmus armatus; leachate; biomass production; CO2 fixation

Article Metrics:

  1. Altenhofen, M., Henrique, G., & Brito, C. (2018). Heterotrophic growth of green microalgae. Journal of Chemical Technology & Biotechnology, 92(3), 573–579
  2. Bajunaid, H., Sobri, M., Haiza, N., Yasin, M., Ba-abbad, M. M., Irma, N., & Mohd, N. (2019). Journal of Water Process Engineering Potential of the microalgae-based integrated wastewater treatment and CO2 fixation system to treat Palm Oil Mill Effluent ( POME ) by indigenous microalgae ; Scenedesmus sp . and Chlorella sp, 32.
  3. Barra, L., Chandrasekaran, R., Corato, F., & Brunet, C. (2014). The challenge of ecophysiological biodiversity for biotechnological applications of marine microalgae. Marine Drugs, 12(3), 1641–1675.
  4. Borowitzka, M. A., & Moheimani, N. R. (2013). Algae for Biofuels and Energy. Vol. 5, Springer.
  5. Borowitzka, M. A., & Vonshak, A. (2017). Scaling up microalgal cultures to commercial scale. European Journal of Phycology, 52(4), 407–418.
  6. Chang, H., Quan, X., Zhong, N., Zhang, Z., Lu, C., Li, G., Cheng Z., & Yang L. (2018). High efficiency nutrients reclamation from landfill leachate by microalgae Chlorella vulgaris in membrane photobioreactor for bio-lipid production. Bioresource Technology, 266, 374–381.
  7. Chen, C. Y., Kuo, E. W., Nagarajan, D., Ho, S. H., Dong, C. Di, Lee, D. J., & Chang, J. S. (2020). Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresource Technology, 302(November 2019), 122814.
  8. Comitre, A. A., Vaz, B. da S., Costa, J. A. V., & Morais, M. G. de. (2021). Renewal of nanofibers in Chlorella fusca microalgae cultivation to increase CO2 fixation. Bioresource Technology, 321.
  9. Daneshvar, E., Santhosh, C., Antikainen, E., & Bhatnagar, A. (2018). Microalgal growth and nitrate removal efficiency in different cultivation conditions: Effect of macro and micronutrients and salinity. Journal of Environmental Chemical Engineering, 6(2), 1848–1854.
  10. de Souza, L., Lima, A. S., Matos, Â. P., Wheeler, R. M., Bork, J. A., Vieira Cubas, A. L., & Moecke, E. H. S. (2021). Biopolishing sanitary landfill leachate via cultivation of lipid-rich Scenedesmus microalgae. Journal of Cleaner Production, 303, 127094.
  11. Ding, G. T., Yaakob, Z., Takriff, M. S., Salihon, J., & Abd Rahaman, M. S. (2016). Biomass production and nutrients removal by a newly-isolated microalgal strain Chlamydomonas sp in palm oil mill effluent (POME). International Journal of Hydrogen Energy, 41(8), 4888–4895.
  12. Eze, V. C., Velasquez-Orta, S. B., Hernández-García, A., Monje-Ramírez, I., & Orta-Ledesma, M. T. (2018). Kinetic modelling of microalgae cultivation for wastewater treatment and carbon dioxide sequestration. Algal Research, 32(March), 131–141.
  13. Hariz, H. B., Takriff, M. S., Ba-Abbad, M. M., Mohd Yasin, N. H., & Mohd Hakim, N. I. N. (2018). CO2 fixation capability of Chlorella sp. and its use in treating agricultural wastewater. Journal of Applied Phycology, 1–11.
  14. Hawrot-Paw, M., Koniuszy, A., Gałczynska, M., Zajac, G., & Szyszlak-Bargłowicz, J. (2020). Production of microalgal biomass using aquaculture wastewater as growth medium. Water (Switzerland), 12(1).
  15. Hemalatha, M., Sravan, J. S., Min, B., & Venkata Mohan, S. (2019). Microalgae-biorefinery with cascading resource recovery design associated to dairy wastewater treatment. Bioresource Technology, 284(March), 424–429.
  16. Hernández-García, A., Velásquez-Orta, S. B., Novelo, E., Yáñez-Noguez, I., Monje-Ramírez, I., & Orta Ledesma, M. T. (2019). Wastewater-leachate treatment by microalgae: Biomass, carbohydrate and lipid production. Ecotoxicology and Environmental Safety, 174(March), 435–444.
  17. Hernández-garcía, A., Velásquez-orta, S. B., Novelo, E., Yáñez-noguez, I., Monje-ramírez, I., & Orta, M. T. (2019). Ecotoxicology and Environmental Safety Wastewater-leachate treatment by microalgae : Biomass , carbohydrate and lipid production. Ecotoxicology and Environmental Safety, 174(August 2018), 435–444.
  18. Huesemann, M., Crowe, B., Waller, P., Chavis, A., Hobbs, S., Edmundson, S., & Wigmosta, M. (2016). A validated model to predict microalgae growth in outdoor pond cultures subjected to fl uctuating light intensities and water temperatures. ALGAL, 13, 195–206.
  19. Hussein, M., Yoneda, K., Mohd-zaki, Z., Amir, A., & Othman, N. (2020). Heavy metals in leachate, impacted soils and natural soils of different landfills in Malaysia: An alarming threat. Chemosphere, 267.
  20. Jacob-Lopes, E., Scoparo, C. H. G., Lacerda, L. M. C. F., & Franco, T. T. (2009). Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chemical Engineering and Processing: Process Intensification, 48(1), 306–310.
  21. Jumaah, M. A., Othman, M. R., & Yusop, M. R. (2016). Characterization of Leachate from Jeram Sanitary landfill - Malaysia, International Journal of ChemTech Research, 9(08), 571–574
  22. Khanzada, Z. T. (2020). Phosphorus removal from land fi ll leachate by microalgae. Biotechnology Reports, 25, e00419.
  23. Koo, C. G., Woo, M. H., Yury, N., Lam, M. K., & Lee, K. T. (2017). Dual Role of Chlorella vulgaris in Wastewater Treatment for Biodiesel Production: Growth Optimization and Nutrients Removal Study. Journal of the Japan Institute of Energy, 96(8), 290–299.
  24. Leite, L. de S., Hoffmann, M. T., & Daniel, L. A. (2019). Microalgae cultivation for municipal and piggery wastewater treatment in Brazil. Journal of Water Process Engineering, 31(March), 1–7.
  25. Li, X., Li, W., Zhai, J., Wei, H., & Wang, Q. (2019). Effect of ammonium nitrogen on microalgal growth, biochemical composition and photosynthetic performance in mixotrophic cultivation. Bioresource Technology, 273(November 2018), 368–376.
  26. Mubashar, M., Naveed, M., Mustafa, A., Ashraf, S., Shehzad Baig, K., Alamri, S., Siddiqui, M.H., Zabochnicka-Świątek, M., Szota, M. and Kalaji, H.M. (2020). Experimental Investigation of Chlorella vulgaris and Removal of Heavy Metals from Textile Wastewater. Water, 12(11), 3034
  27. Nair, A. T., Senthilnathan, J., & Nagendra, S. M. S. (2019). Application of the phycoremediation process for tertiary treatment of landfill leachate and carbon dioxide mitigation. Journal of Water Process Engineering, 28(January), 322–330.
  28. Naveen, B. P., Mahapatra, D. M., Sitharam, T. G., Sivapullaiah, P. V., & Ramachandra, T. V. (2017). Physico-chemical and biological characterization of urban municipal landfill leachate. Environmental Pollution, 220, 1–12.
  29. Nawaz, T., Rahman, A., Pan, S., Dixon, K., Petri, B., & Selvaratnam, T. (2020). A Review of Landfill Leachate Treatment by Microalgae: Current Status and Future Directions. Processes, 8(4).
  30. Ogbonna, I. O., Okpozu, O. O., Ikwebe, J., & Ogbonna, J. C. (2019). Utilisation of Desmodesmus subspicatus LC172266 for simultaneous remediation of cassava wastewater and accumulation of lipids for biodiesel production. Biofuels, 10(5), 657–664.
  31. Park, J., Jin, H. F., Lim, B. R., Park, K. Y., & Lee, K. (2010). Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresource Technology, 101(22), 8649–8657.
  32. Pereira, S. F. L., Gonçalves, A. L., Moreira, F. C., Silva, T. F. C. V., Vilar, V. J. P., & Pires, J. C. M. (2016). Nitrogen removal from landfill leachate by microalgae. International Journal of Molecular Sciences, 17(11), 1–14.
  33. Quan, X., Hu, R., Chang, H., Tang, X., & Huang, X. (2020). Enhancing microalgae growth and land fi ll leachate treatment through ozonization. Journal of Cleaner Production, 248, 119182.
  34. Roleda, M. Y., Slocombe, S. P., Leakey, R. J. G., Day, J. G., Bell, E. M., & Stanley, M. S. (2013). Bioresource Technology Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresource Technology, 129, 439–449.
  35. Sakarika, M., & Kornaros, M. (2016). Effect of pH on growth and lipid accumulation kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur limitation. Bioresource Technology, 219, 694–701.
  36. Sasongko, N. A., Noguchi, R., Ito, J., Demura, M., Ichikawa, S., Nakajima, M., & Watanabe, M. M. (2018). Engineering study of a pilot scale process plant for microalgae-oil production utilizing municipal wastewater and flue gases: Fukushima pilot plant. Energies, 11(7).
  37. Sforza, E., Khairallah Al Emara, M. H., Sharif, A., & Bertucco, A. (2015). Exploitation of urban landfill leachate as nutrient source for microalgal biomass production. Chemical Engineering Transactions, 43, 373–378.
  38. Singh, S. P., & Singh, P. (2015). Effect of temperature and light on the growth of algae species: A review. Renewable and Sustainable Energy Reviews, 50, 431–444.
  39. Song, C., Hu, X., Liu, Z., Li, S., & Kitamura, Y. (2020). Combination of brewery wastewater purification and CO2 fixation with potential value-added ingredients production via different microalgae strains cultivation. Journal of Cleaner Production, 268, 122332.
  40. Syafaini, A., Sobri, M., Haiza, N., & Yasin, M. (2021). Microalgae acclimatization in industrial wastewater and its effect on growth and primary metabolite composition. Algal Research, 53(June 2020), 102163.
  41. Syazwani, N., Rahman, B. A., & Ahmad, N. (2019). Removal of Pollutants from Landfill Leachate Using Physicochemical Technique. International Journal of Civil Engineering, 0(0), 0.
  42. Tsolcha, O. N., Tekerlekopoulou, A. G., Akratos, C. S., Aggelis, G., Genitsaris, S., Moustaka-Gouni, M., & Vayenas, D. V. (2017). Biotreatment of raisin and winery wastewaters and simultaneous biodiesel production using a Leptolyngbya-based microbial consortium. Journal of Cleaner Production, 148, 185–193.
  43. Wong, Y., Ho, Y., & Ho, K. (2017). Growth Medium Screening for Chlorella vulgaris Growth and Lipid Production. Journal of Aquaculture & Marine Biology, 6(1).
  44. Wu, K.-C., Yau, Y.-H., & Ho, K.-C. (2017). Capability of microalgae for local saline sewage treatment towards biodiesel production. {IOP} Conference Series: Earth and Environmental Science, 82, 12008.
  45. Xing, R., Ma, W., Shao, Y., Cao, X., Chen, L., & Jiang, A. (2019). Factors that affect the growth and photosynthesis of the filamentous green algae, Chaetomorpha valida, in static sea cucumber aquaculture ponds with high salinity and high pH. PeerJ, 7, e6468–e6468.

Last update:

  1. Microalgae Photobioreactor for Carbon Dioxide Fixation and Production of Biofuel Feedstock

    Rahmania Admirasari, Agus Rifai, Joko Prayitno, Arif Dwi Santoso, Joko Prayitno Susanto. IOP Conference Series: Earth and Environmental Science, 1187 (1), 2023. doi: 10.1088/1755-1315/1187/1/012010
  2. A waste-based circular economy approach for phycoremediation of X-ray developer solution

    Swati Sharma, Anil Kant, Surajbhan Sevda, Tejraj M. Aminabhavi, Vijay Kumar Garlapati. Environmental Pollution, 316 , 2023. doi: 10.1016/j.envpol.2022.120530
  3. Description of Some Microalgae Isolates Captured from Sumatra Island, Indonesia

    EP Pane, Y Risjani, Yunianta, J Pane, F Fitrianesia, R Nugraha, K Rahmawati. IOP Conference Series: Earth and Environmental Science, 1191 (1), 2023. doi: 10.1088/1755-1315/1191/1/012014

Last update: 2023-11-27 12:17:02

No citation recorded.