skip to main content

Kinetic and Thermodynamic Analysis of Thermal Decomposition of Waste Virgin PE and Waste Recycled PE

School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

Received: 20 Sep 2021; Revised: 29 Jan 2022; Accepted: 23 Apr 2022; Available online: 15 Jun 2022; Published: 4 Aug 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Polyethylene is one of the key components of plastic wastes that can be utilized for resource recovery through pyrolysis method. Understanding of thermal decomposition properties and reaction mechanism of pyrolysis are necessary in designing an efficient reactor system. This study investigated the kinetics and thermodynamics parameters for individual waste virgin polyethylene (WVPE) and waste recycled polyethylene (WRPE) by using distributed activation energy model (DAEM). The calculated kinetic parameters (activation energy (Ea) and pre-exponential factor (A) were used to determine thermodynamic parameters (enthalpy (ΔH), Gibbs free energy (ΔG) and entropy (ΔS). The activation energy (Ea) values for the WVPE estimated at conversion interval of 5%-95% were in the range of 180.62 to 268.04 kJ/mol while for the WRPE, the values were between 125.58 to 243.08 kJ/mol. This indicates the influence of exposure to weathering and mechanical stress during recycling on the course of the WRPE degradation. It was also found that the pyrolysis reaction for both WVPE and WRPE were best fitted using the two-dimensional diffusion (D2) model. The WVPE exhibited higher enthalpy and lower ΔG compared to WRPE, suggesting that less energy is required to thermally degrade recycled waste PE into products of char, gases and pyro-oils.  Both kinetics and thermodynamics analyses were useful for the development of the plastic waste management through pyrolysis process.
Fulltext View|Download
Keywords: pyrolysis; degradation kinetics; iso-conversional; DAEM; polyethylene waste

Article Metrics:

  1. Aboulkas, A., El harfi, K. & El Bouadili, A. (2010). Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energy Conversion Management, 51, no. 7, 1363–1369. doi: https://doi.org/10.1016/j.enconman.2009.12.017
  2. Ahmad, M. S., Mehmood, M. A., Al Ayed, O. S., Ye, G., Luo, H., Ibrahim, M., Rashid, U., Arbi Nehdi, I., & Qadir, G. (2017). Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Bioresource Technology, 224, 708–713. https://doi.org/10.1016/j.biortech.2016.10.090
  3. Alhazmi, H., Almansour, F. H., & Aldhafeeri, Z. (2021). Plastic waste management: A review of existing life cycle assessment studies. Sustainability (Switzerland), 13(10), 1–21. https://doi.org/10.3390/su13105340
  4. Alsewailem, F D, & Almutabaqani, L. A. (2013). Activation Energy for the Pyrolysis of Polymer Wastes. European Chemical Bulletin, 3(1), 93–97
  5. Alsewailem, Fares D. (2009). Characterization of some post-consumer thermoplastic food packaging reclaimed from remote desert areas in Saudi Arabia. International Journal of Polymeric Materials and Polymeric Biomaterials, 58(2), 77–86. https://doi.org/10.1080/00914030802565418
  6. Awoyera, P. O., & Adesina, A. (2020). Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, 12, e00330. https://doi.org/10.1016/j.cscm.2020.e00330
  7. Belmokaddem, M., Mahi, A., Senhadji, Y., & Pekmezci, B. Y. (2020). Mechanical and physical properties and morphology of concrete containing plastic waste as aggregate. Construction and Building Materials, 257, 119559. https://doi.org/10.1016/j.conbuildmat.2020.119559
  8. Darus, N., Tamimi, M., Tirawaty, S., Muchtazar, M., Trisyanti, D., Akib, R., Condorini, D., & Ranggi, K. (2020). An Overview of Plastic Waste Recycling in the Urban Areas of Java Island in Indonesia. Journal of Environmental Science and Sustainable Development, 3(2), 402–415. https://doi.org/10.7454/jessd.v3i2.1073
  9. Duque, J. V. F., Martins, M. F., Debenest, G., & Orlando, M. T. D. A. (2020). The influence of the recycling stress history on LDPE waste pyrolysis. Polymer Testing, 86(January), 106460. https://doi.org/10.1016/j.polymertesting.2020.106460
  10. Ghatge, S., Yang, Y., Ahn, J. H., & Hur, H. G. (2020). Biodegradation of polyethylene: a brief review. Applied Biological Chemistry, 63(1). https://doi.org/10.1186/s13765-020-00511-3
  11. He, P., Chen, L., Shao, L., Zhang, H., & Lu, F. (2019). Municipal solid waste (MSW) landfill: a source of microplastics? -evidence of microplastics in landfill leachate. Water Research, 159,38-45. https://doi.org/10.1016/j.watres.2019.04.060
  12. Jiang, L., Yang, X. R., Gao, X., Xu, Q., Das, O., Sun, J. H., & Kuzman, M. K. (2020). Pyrolytic kinetics of polystyrene particle in nitrogen atmosphere: Particle size effects and application of distributed activation energy method. Polymers, 12(2), 1–19. https://doi.org/10.3390/polym12020421
  13. Jing Pan, Hong Jiang, Taiping Qing, Junfeng Zhang, Ke Tian (2021). Transformation and kinetics of chlorine-containing products during pyrolysis of plastic wastes. Chemosphere, 284,131348. https://doi.org/10.1016/j.chemosphere.2021.131348
  14. Kim, Y. S., Kim, Y. S., & Kim, S. H. (2010). Investigation of thermodynamic parameters in the thermal decomposition of plastic waste-waste lube oil compounds. Environmental Science and Technology, 44(13), 5313–5317. https://doi.org/10.1021/es101163e
  15. Latifa, B., Zohra, F. F., & Said, H. (2020). Study of Raw and Recycled Polyethylene Terephthalate by Meaning of TGA and Computer Simulation. Advances in Polymer Technology. https://doi.org/10.1155/2020/8865926
  16. Lawner, B. J., & Mattu, A. (2012). Cardiac Arrest. Cardiovascular Problems in Emergency Medicine: A Discussion-Based Review, 57(4), 123–137. https://doi.org/10.1002/9781119959809.ch9
  17. Lee, N., Joo, J., Lin, K. Y. A., & Lee, J. (2021). Waste-to-fuels: Pyrolysis of low-density polyethylene waste in the presence of H-ZSM-11. Polymers, 13(8), 1–9. https://doi.org/10.3390/polym13081198
  18. Liu, H., Wang, C., Zhang, J., Zhao, W., & Fan, M. (2020). Pyrolysis Kinetics and Thermodynamics of Typical Plastic Waste. Energy and Fuels, 34(2), 2385–2390. https://doi.org/10.1021/acs.energyfuels.9b04152
  19. Min, K., Cuiffi, J. D., & Mathers, R. T. (2020). Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-14538-z
  20. Moldoveanu, S. C. (2019). Pyrolysis of Hydrocarbons. In Pyrolysis of Organic Molecules. https://doi.org/10.1016/b978-0-444-64000-0.00002-0
  21. Mortezaeikia, V., Tavakoli O., Khodaparasti M.S. (2021) A review on kinetic study approach for pyrolysis of plastic wastes using thermogravimetric analysis. Journal of Analytical and Applied Pyrolysis, Article in press. https://doi.org/10.1016/j.jaap.2021.105340
  22. Mumbach, G. D., Alves, J. L. F., Da Silva, J. C. G., De Sena, R. F., Marangoni, C., Machado, R. A. F., & Bolzan, A. (2019). Thermal investigation of plastic solid waste pyrolysis via the deconvolution technique using the asymmetric double sigmoidal function: Determination of the kinetic triplet, thermodynamic parameters, thermal lifetime and pyrolytic oil composition for clean energy recovery. Energy Conversion and Management, 200, 112031. https://doi.org/10.1016/j.enconman.2019.11203
  23. Navarro, M.V., Lopez, J.M., Vesses, A., CAllen, M.S. & Garcia, T (2018). Kinetic Study for the Pyrolysis of Lignocellulosic Biomass and Plastics using the Distributed Activation Energy Model. Energy 165, 731-742. https://doi.org/10.1016/j.energy.2018.09.133
  24. Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., & Beas, I. N. (2021). An overview of plasticwaste generation and management in food packaging industries. Recycling, 6(1), 1–25. https://doi.org/10.3390/recycling6010012
  25. Patrício Silva, A. L., Prata, J. C., Walker, T. R., Duarte, A. C., Ouyang, W., Barcelò, D., & Rocha-Santos, T. (2021). Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chemical Engineering Journal,405,126683. https://doi.org/10.1016/j.cej.2020.126683
  26. Qi Hui, N.,aBridgid Lai Fui, C., Suzana, Y., Adrian Chun Minh, L., Kelly Yi Ying, C. (2018). Modeling of the co-pyrolysis of rubber residual and HDPE waste using the distributed activation energy model (DAEM). Applied Thermal Engineering,138,336-345. https://doi.org/10.1016/j.applthermaleng.2018.04.069
  27. Schyns, Z. O. G. and Shaver, M. P. (2021). Mechanical Recycling of Packaging Plastics: A Review. Macromolecular Rapid Communications 42, 2000415. https://doi.org/10.1002/marc.202000415
  28. Sharudin, S.D.A., Abnisa, F., Daud, W.M.A.W & Karoua, A. (2018). Pyrolysis of plastic waste for liquid fuel production as prospective energy resource. IOP Conf, Series: Material Science and Engineering, 334, 012001. doi: 10.1088/1757-899X/334/1/012001
  29. Singh, P., & Sharma, V. P. (2016). Integrated Plastic Waste Management: Environmental and Improved Health Approaches. Procedia Environmental Sciences, 35, 692–700. https://doi.org/10.1016/j.proenv.2016.07.068
  30. Singh, S., Patil, T., Tekade, S. P., Gawande, M. B., & Sawarkar, A. N. (2021). Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: Thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis. Science of the Total Environment, 783,147004. https://doi.org/10.1016/j.scitotenv.2021.147004
  31. Soria-verdugo, A., Goos, E., & García-hernando, N. (2015). Effect of the number of TGA curves employed on the biomass pyrolysis kinetics results obtained using the Distributed Activation Energy Model, Fuel Processing Technology, 134, 360–371. http://dx.doi.org/10.1016/j.fuproc.2015.02.018
  32. Tait, P. W., Brew, J., Che, A., Costanzo, A., Danyluk, A., Davis, M., Khalaf, A., McMahon, K., Watson, A., Rowcliff, K., & Bowles, D. (2020). The health impacts of waste incineration: a systematic review. Australian and New Zealand Journal of Public Health, 44(1), 40–48. https://doi.org/10.1111/1753-6405.12939
  33. Yan, J., Liu, M., Feng, Z., Bai, Z., Shui, H., Li, Z., Lei, Z., Wang, Z., Ren, S., Kang, S., & Yan, H. (2020). Study on the pyrolysis kinetics of low-medium rank coals with distributed activation energy model. Fuel, 261, 116359. https://doi.org/10.1016/j.fuel.2019.116359

Last update:

  1. Simulation and experimental study of refuse-derived fuel gasification in an updraft gasifier

    Thanh Xuan Nguyen-Thi, Thi Minh Tu Bui, Van Ga Bui. International Journal of Renewable Energy Development, 12 (3), 2023. doi: 10.14710/ijred.2023.53994
  2. Transformation method in determining kinetic parameters of biomass thermal decomposition from solid-state approach to volatile state approach

    Soen Steven, Pandit Hernowo, Nadirah Nadirah, Irhan Febijanto, Rudi Herdioso, Dharmawan Dharmawan, Ernie S.A. Soekotjo, Yazid Bindar. Biomass and Bioenergy, 183 , 2024. doi: 10.1016/j.biombioe.2024.107171

Last update: 2025-01-21 15:44:52

No citation recorded.