skip to main content

Numerical Modeling of CuInxGa(1-x)Se2/WS2 Thin Solar Cell with an Enhanced PCE

Department of Electrical Engineering, University of Tiaret, Algeria

Received: 23 May 2021; Revised: 21 Jul 2021; Accepted: 4 Dec 2021; Available online: 14 Jan 2022; Published: 4 May 2022.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Designing thin film solar cells with high and stable output performance under different operating points remains a large area of research. In the context of Chalcopyrite-based solar cells (CuInxGa(1-x)Se2) where the buffer layer is CdS, great progress has been made but research is still underway to optimize their performance. Besides the environmental concerns and limiting factors of CdS material, the use or combination of new materials like ZnS, ZnSe and WS2 as a buffer layer is solicited. Due to these attracted optical and crystallographic properties, Tungsten Disulfide: WS2 is solicited during the last years. Through numerical simulation, we investigate in this work the dc parameters of CuInxGa(1-x)Se2/WS2 solar cell with reduced buffer layer thickness of 30 nm. Considering the presence of neutral and divalent defects in the absorber layer, simulations are performed under the impact of temperature, concentration of charge carriers in WS2 layer and light spectrum change. The divalent defects taken into account are: double donors / acceptors and amphoteric having a Gaussian distribution. For more calculation precision and in order to obtain the desired performance of the solar cell, the impact of series and shunt resistors is also considered. In comparison with results reported in previous works, carried out on the CuInxGa(1-x) Se2/WS2 solar cell, a remarkable improvement in the performance of the solar cell is achieved. When temperature increase by 10K, the short circuit current and  open circuit voltage are enhanced by ~0,05mA/cm2 and ~0,0022 respectively. The optimal values of the solar cell parameters obtained in this study are: Jsc≈ 31.0683 (mA/cm2), Voc=1.0173 (V), PCE = 26.72 % and FF=84.54%.
Fulltext View|Download
Keywords: WS2; CuInxGa(1-x)Se2; divalent defect; thin film; scaps-1d

Article Metrics:

  1. Aissani, H., Helmaoui, A,. Moughli, H. (2017) Numerical Modeling of Graded Band-Gap CIGS Solar Cell for High Efficiency, International Journal of Applied Engineering Research, 12(02), 227-232
  2. AlZoubi, T., & Moustafa, M. (2019) Numerical optimization of absorber and CdS buffer layers in CIGS solar cells using SCAPS. SGCE 291–298; https://doi.org/10.12720/sgce.8.3.291-298
  3. Belhadji, Y., (2020) The band gap and Ga-composition grading profiles effect on the performance of 1μmthin film graded-CIGS solar cell, in: 2020 6th IEEE International Energy Conference (ENERGYCon). 360–365; https://doi.org/10.1109/ENERGYCon48941.2020.9236491
  4. Bin Rafiq, Md.K.S., Amin, N., Alharbi, H.F., Luqman, M., Ayob, A., Alharthi, Y.S., Alharthi, N.H., Bais, B., Akhtaruzzaman, Md. (2020) WS2: A New Window Layer Material for Solar Cell Application. Sci Rep 10, 771; https://doi.org/10.1038/s41598-020-57596-5
  5. Dabbabi, S., Ben Nasr, T., Kamoun-Turki, N. (2017) Parameters optimization of CIGS solar cell using 2D physical modeling. Results in Physics 7, 4020–4024; https://doi.org/10.1016/j.rinp.2017.06.057
  6. Daoudia, A.K., El Hassouani, Y., Benami, A.. (2016) Investigation of the effect of thickness, band gap and temperature on the efficiency of CIGS solar cells through SCAPS-1D 6(2), 71-75
  7. Debbarma, R. Behura, S. K., Wen, Y., Che, S. and Berry, V. (2018) WS2-induced enhanced optical absorption and efficiency in graphene/silicon heterojunction photovoltaic cells. Nanoscale, 10, 20218–20225. https://doi.org/10.1039/c8nr03194k
  8. Dhere, N.G., Ghongadi, S.R., Pandit, M.B., Jahagirdar, A.H., Scheiman, D. (2002) CIGS2 thin-film solar cells on flexible foils for space power. Prog. Photovolt: Res. Appl., 10, 407–416; https://doi.org/10.1002/pip.447
  9. Eisenbarth, T., Unold, T., Caballero, R., Kaufmann, C.A., Schock, H.-W. (2010) Interpretation of admittance, capacitance-voltage, and current-voltage signatures in Cu(In,Ga)Se2 thin film solar cells. Journal of Applied Physics, 107, 034509; https://doi.org/10.1063/1.3277043
  10. Fan JCC (1986) Theoretical temperature dependence of solar cell parameters. Solar Cells 17(2), 309–315. https://doi.org/10.1016/0379-6787(86)90020-7
  11. Fathi, M., Abderrezek, M., Djahli, F., Ayad, M. (2015) Study of Thin Film Solar Cells in High Temperature Condition. Energy Procedia 74, 1410–1417. https://doi.org/10.1016/j.egypro.2015.07.788
  12. Frisk, C., Platzer-Björkman, C., Olsson, J., Szaniawski, P., Wätjen, J.T., Fjällström, V., Salomé, P., Edoff, M. (2014) Optimizing Ga-profiles for highly efficient Cu(In, Ga)Se 2 thin film solar cells in simple and complex defect models. J. Phys. D: Appl. Phys., 47, 485104. https://doi.org/10.1088/0022-3727/47/48/485104
  13. Ghani, F., Duke, M., Carson, J. (2013) Numerical calculation of series and shunt resistance of a photovoltaic cell using the Lambert W-function: Experimental evaluation. Solar Energy 87, 246–253. https://doi.org/10.1016/j.solener.2012.11.002
  14. Goffard, J., Colin, C., Mollica, F., Cattoni, A., Sauvan, C., Lalanne, P., Guillemoles, J.-F., Naghavi, N., Collin, S. (2017) Light Trapping in Ultrathin CIGS Solar Cells with Nanostructured Back Mirrors.IEEE J. Photovoltaics 7, 1433–1441. https://doi.org/10.1109/JPHOTOV.2017.2726566
  15. Gremenok, V.F., Zaretskaya, E.P., Bashkirov, S.A., Kim, W.Y., Chai, S.H., Moon, C.-B., Jhun, C.G. (2015) Growth and Optical Properties of Cu(In, Ga)Se 2 Thin Films on Flexible Metallic Foils. j. adv.microsc. res., 10, 28–32; https://doi.org/10.1166/jamr.2015.1233
  16. Igalson, M., & Urbaniak, A. (2005) Defect states in the CIGS solar cells by photocapacitance and deep level optical spectroscopy. Bulletin of the Polish Academy of Sciences: Technical Sciences, 53 (2), 157-161
  17. Kerr, L.L., Li, S.S., Johnston, S.W., Anderson, T.J., Crisalle, O.D., Kim, W.K., Abushama, J., Noufi, R.N. (2004) Investigation of defect properties in Cu(In,Ga)Se2 solar cells by deep-level transient spectroscopy. Solid-State Electronics 48, 1579–1586. https://doi.org/10.1016/j.sse.2004.03.005
  18. Khan, S., Rashid, M., Rahim, W., Aitezaz Hussain, M., Rahim, A. (2020) Numerical Simulation for Enhancement of output Performance of WS2 based Thin Film Solar Cells. IJEW 07, 149–153; https://doi.org/10.34259/ijew.20.702149153
  19. Kumar, A., Singh, S., 2020. Numerical modeling of planar lead free perovskite solar cell using tungsten disulfide (WS2 ) as an electron transport layer and Cu2O as a hole transport layer. Mod. Phys. Lett. B 34, 2050258; https://doi.org/10.1142/S0217984920502589
  20. Lin, Y., Adilbekova, B., Firdaus, Y., Yengel, E., Faber, H., Sajjad, M., Zheng, X., Yarali, E., Seitkhan, A., Bakr, O.M., El-Labban, A., Schwingenschlögl, U., Tung, V., McCulloch, I., Laquai, F., Anthopoulos, T.D. (2019) 17% Efficient Organic Solar Cells Based on Liquid Exfoliated WS2 as a Replacement for PEDOT:PSS. Adv. Mater. 31, 1902965; https://doi.org/10.1002/adma.201902965
  21. Liu, S., Simburger, E., Matsumoto, J., Garcia, A., Ross, J., Nocerino, J. (2005) Evaluation of thin-film solar cell temperature coefficients for space applications. Prog Photovol Res Appl 13, 149–156. https://doi.org/10.1002/pip.602
  22. Lundberg, O., Bodegård, M., Malmström, J., Stolt, L. (2003) Influence of the Cu(In,Ga)Se 2 thickness and Ga grading on solar cell performance: CIGS thickness and Ga grading: solar cell performance. Prog. Photovolt: Res. Appl. 11, 77–88; https://doi.org/10.1002/pip.462
  23. Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., Sugimoto, H. (2019) Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%. IEEE J. Photovoltaics, 9, 1863–1867; https://doi.org/10.1109/JPHOTOV.2019.2937218
  24. Ong, K.H., Agileswari, R., Maniscalco, B., Arnou, P., Kumar, C.C., Bowers, J.W., Marsadek, M.B. (2018) Review on Substrate and Molybdenum Back Contact in CIGS Thin Film Solar Cell. International Journal of Photoenergy, 1–14; https://doi.org/10.1155/2018/9106269
  25. Patel, A. K., & Pandey, B.P. (2020) Performance Analysis of WS2 TMD Material as an absorber layer used in Solar Cell. (ICE3-2020)
  26. Pettersson, J., Torndahl, T., Platzer-Bjorkman, C., Hultqvist, A., Edoff, M., 2013. The Influence of Absorber Thickness on Cu(In,Ga)Se2 Solar Cells With Different Buffer Layers. IEEE J. Photovoltaics, 3, 1376–1382; https://doi.org/10.1109/JPHOTOV.2013.2276030
  27. Rai, N., & Dwivedi, D.K. (2020) Numerical modelling for enhancement of output performance of CIGS based thin film solar cell using SCAPS 1-D simulation software. ICC-2019, Bikaner, India, 140021; https://doi.org/10.1063/5.0001233
  28. Rashidi, S., Rashidi, S.,, Heydari, R.K., Esmaeili, S., Tran, N., Thangi, D., Wei, W. (2020) WS2 and MoS2 counter electrode materials for dye-sensitized solar cells. Prog Photovolt Res Appl pip.3350; https://doi.org/10.1002/pip.3350
  29. Ravindra, N.M., Lin, Liqi. (2020) Temperature dependence of CIGS and perovskite solar cell performance: an overview. Applied Sciences 2,1361. https://doi.org/10.1007/s42452-020-3169-2
  30. Roy, S., Bermel, P. (2018) Electronic and optical properties of ultra-thin 2D tungsten disulfide for photovoltaic applications. Solar Energy Materials and Solar Cells, 174, 370–379; https://doi.org/10.1016/j.solmat.2017.09.011
  31. Shanmugam, M., Bansal, T., Durcan, C.A., Yu, B. (2012) Schottky-barrier solar cell based on layered semiconductor tungsten disulfide nanofilm. Appl. Phys. Lett. 101, 263902; https://doi.org/10.1063/1.4773525
  32. Sharaman, W.N., Birkmire, R.W., Marsillac, S., Marudachalam, M., Orbey, N., Russell, T.W.F. (1997) Effect of reduced deposition temperature, time, and thickness on Cu(InGa)Se/sub 2/ films and devices, in: Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference, 331–334; https://doi.org/10.1109/PVSC.1997.654095
  33. Singh, A.K., & Jen, T. C. (2020) Structural, optical properties of spin-coated CIG/SLG, CIGS/SLG, CIGS/Mo/SLG thin films. Surface Engineering, 36, 22–28; https://doi.org/10.1080/02670844.2018.1535787
  34. Sobayela, K., Shahinuzzaman, M., Amin, N., Karim, M.R., Dar, M.A., Gul, R., Alghoul, M.A., Sopian, K., Hasan, A.K.M., Akhtaruzzaman, Md. (2020) Efficiency enhancement of CIGS solar cell by WS2 as window layer through numerical modelling tool. Solar Energy 207, 479–485; https://doi.org/10.1016/j.solener.2020.07.007
  35. Sobayelb, K., Rahman, K. S., Karim, M. R., Aijaz, M. O., Dar, M. A., Shar, M. A., Misran, H., Amin, N. (2018) Numerical Modeling on Prospective Buffer Layers for Tungsten Di-Sulfide (WS2) Solar Cell by Scaps-1d, 15(6), 307-315
  36. Zaidi, B., Zouagri, M., Merad, S., Shekhar, C., Hadjoudja, B., Chouial, B. (2019) Boosting Electrical Performance of CIGS Solar Cells: Buffer Layer Effect. Acta Phys. Pol. A 136, 988-991. https://doi.org/10.12693/APhysPolA.136.988

Last update:

  1. Numerical investigation of lead free Cs2TiBr6 based perovskite solar cell with optimal selection of electron and hole transport layer through SCAPS-1D simulation

    Hironmoy Karmaker, Ayesha Siddique, Barun K. Das. Results in Optics, 13 , 2023. doi: 10.1016/j.rio.2023.100571
  2. Ultrathin Film Amorphous Silicon Solar Cell Performance using Rigorous Coupled Wave Analysis Method

    Raghvendra Sarvjeet Dubey, Sigamani Saravanan. International Journal of Renewable Energy Development, 11 (3), 2022. doi: 10.14710/ijred.2022.46009
  3. Performance evaluation of WS2 as buffer and Sb2S3 as hole transport layer in CZTS solar cell by numerical simulation

    Md. Nur Hossain Riyad, Adil Sunny, Most. Marzia Khatun, Sabrina Rahman, Sheikh Rashel Al Ahmed. Engineering Reports, 5 (5), 2023. doi: 10.1002/eng2.12600

Last update: 2024-03-29 00:25:43

No citation recorded.