skip to main content

Outstanding Photo-bioelectrochemical Cell by Integrating TiO2 and Chlorophyll as Photo-bioanode for Sustainable Energy Generation

1Department of Chemical Engineering, Institut Teknologi Indonesia, Jl. Raya Puspiptek Serpong, South Tangerang 15314, Indonesia

2Research Centre for Chemistry, National Research and Innovation Agency, Kawasan PUSPIPTEK Serpong, South Tangerang 15314, Indonesia

Received: 30 Sep 2021; Revised: 18 Nov 2021; Accepted: 7 Dec 2021; Available online: 10 Jan 2022; Published: 4 May 2022.
Editor(s): Lam Shiung
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Photosynthesis is a technique for converting light energy into chemical energy that is both efficient and sustainable. Chlorophyll in energy-transducing photosynthetic organisms is unique because of their distinctive structure and composition. In photo-bioelectrochemical research, the chlorophyll's quantum trapping efficiency is attractive. Chlorophyll from Spirulina platensis is demonstrated to communicate directly with TiO2-modified Indium Thin Oxide (ITO) to generate electricity without the use of any mediator. TiO2-modified ITO with a chlorophyll concentration of 100 % generated the greatest power density and photocurrent of approximately 178.15 mW/m2 and 596.92 mA/m2 from water oxidation under light among all the other materials. While the sensitivity with light was 0.885 mA/m2.lux, and Jmax value was 1085 mA/m2. Furthermore, the power and photocurrent density as a function of chlorophyll content are studied. The polarizability and Van der Waals interaction of TiO2 and chlorophyll are crucial in enhancing electron transport in photo-bioelectrochemical systems. As a result, this anode structure has the potential to be improved and used to generate even more energy.
Fulltext View|Download
Keywords: photo-current; Indium Thin Oxide; Van Der Waals interaction; polar interaction; light sensitivity
Funding: Indonesia Toray Science Foundation

Article Metrics:

  1. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiology, 24(1), 1.
  2. Cevik, E., Carbas, B. B., Senel, M., & Yildiz, H. B. (2018). Construction of conducting polymer/cytochrome C/thylakoid membrane based photo-bioelectrochemical fuel cells generating high photocurrent via photosynthesis. Biosensors and Bioelectronics, 113, 25-31.
  3. Chen, H., Tang, M., Rui, Z., Wang, X., & Ji, H. (2016). ZnO modified TiO2 nanotube array supported Pt catalyst for HCHO removal under mild conditions. Catalysis Today, 264, 23-30;
  4. Chen, J., Cen, J., Xu, X., & Li, X. (2016). The application of heterogeneous visible light photocatalysts in organic synthesis. Catalysis Science & Technology, 6(2), 349-362.
  5. Christwardana, M., Septevani, A. A., & Yoshi, L. A. (2021). Sustainable electricity generation from photo-bioelectrochemical cell based on carbon nanotubes and chlorophyll anode. Solar Energy, 227, 217-223.
  6. Dhafina, W. A., Daud, M. Z., & Salleh, H. (2020). The sensitization effect of anthocyanin and chlorophyll dyes on optical and photovoltaic properties of zinc oxide based dye-sensitized solar cells. Optik, 207, 163808.
  7. Duan, S., Chen, G., Li, M., Chen, G., Wang, X. F., Tamiaki, H., & Sasaki, S. I. (2017). Near-infrared absorption bacteriochlorophyll derivatives as biomaterial electron donor for organic solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 347, 49-54.
  8. Ferrari-Lima, A. M., De Souza, R. P., Mendes, S. S., Marques, R. G., Gimenes, M. L., & Fernandes-Machado, N. R. C. (2015). Photodegradation of benzene, toluene and xylenes under visible light applying N-doped mixed TiO2 and ZnO catalysts. Catalysis Today, 241, 40-46.
  9. Gao, M., Zhu, L., Ong, W. L., Wang, J., & Ho, G. W. (2015). Structural design of TiO 2-based photocatalyst for H 2 production and degradation applications. Catalysis science & technology, 5(10), 4703-4726.
  10. Heller, A. (2006). Electron-conducting redox hydrogels: design, characteristics and synthesis. Current opinion in chemical biology, 10(6), 664-672.
  11. Jiang, D., Xu, Y., Wu, D., & Sun, Y. (2008). Visible-light responsive dye-modified TiO2 photocatalyst. Journal of Solid State Chemistry, 181(3), 593-602.
  12. Kirchhofer, N. D., Rasmussen, M. A., Dahlquist, F. W., Minteer, S. D., & Bazan, G. C. (2015). The photobioelectrochemical activity of thylakoid bioanodes is increased via photocurrent generation and improved contacts by membrane-intercalating conjugated oligoelectrolytes. Energy & Environmental Science, 8(9), 2698-2706.
  13. Li, X., Shi, J. L., Hao, H., & Lang, X. (2018). Visible light-induced selective oxidation of alcohols with air by dye-sensitized TiO2 photocatalysis. Applied Catalysis B: Environmental, 232, 260-267.
  14. Liu, X., Zhang, H., Liu, C., Chen, J., Li, G., An, T., ... & Zhao, H. (2014). UV and visible light photoelectrocatalytic bactericidal performance of 100%{1 1 1} faceted rutile TiO2 photoanode. Catalysis Today, 224, 77-82.
  15. Luan, Y., Jing, L., Meng, Q., Nan, H., Luan, P., Xie, M., & Feng, Y. (2012). Synthesis of efficient nanosized rutile TiO2 and its main factors determining its photodegradation activity: roles of residual chloride and adsorbed oxygen. The Journal of Physical Chemistry C, 116(32), 17094-17100.
  16. Lv, L., Li, K., Xie, Y., Cao, Y., & Zheng, X. (2017). Enhanced osteogenic activity of anatase TiO2 film: Surface hydroxyl groups induce conformational changes in fibronectin. Materials Science and Engineering: C, 78, 96-104.
  17. Nan, H., Shen, H. P., Wang, G., Xie, S. D., Yang, G. J., & Lin, H. (2017). Studies on the optical and photoelectric properties of anthocyanin and chlorophyll as natural co-sensitizers in dye sensitized solar cell. Optical Materials, 73, 172-178.
  18. Omar, A., Ali, M. S., & Abd Rahim, N. (2020). Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review. Solar Energy, 207, 1088-1121.
  19. Pankratova, G., Pankratov, D., Hasan, K., Åkerlund, H. E., Albertsson, P. Å., Leech, D., ... & Gorton, L. (2017). Supercapacitive photo‐bioanodes and biosolar cells: a novel approach for solar energy harnessing. Advanced Energy Materials, 7(12), 1602285.
  20. Qi, K., Liu, S. Y., Chen, Y., Xia, B., & Li, G. D. (2018). A simple post-treatment with urea solution to enhance the photoelectric conversion efficiency for TiO2 dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 183, 193-199.
  21. Ramakrishna, T. R., Mathesh, M., Liu, Z., Zhang, C., Du, A., Liu, J., ... & Yang, W. (2020). Solvent effect on supramolecular self-assembly of chlorophylls a on chemically reduced graphene oxide. Langmuir, 36(45), 13575-13582.
  22. Rossetti, I., Villa, A., Compagnoni, M., Prati, L., Ramis, G., Pirola, C., ... & Wang, D. (2015). CO 2 photoconversion to fuels under high pressure: effect of TiO 2 phase and of unconventional reaction conditions. Catalysis Science & Technology, 5(9), 4481-4487.
  23. Saikia, B. J., & Parthasarathy, G. (2010). Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys, 1(4), 206-210.
  24. Sekar, N., & Ramasamy, R. P. (2015). Photosynthetic energy conversion: recent advances and future perspective. The Electrochemical Society Interface, 24(3), 67.
  25. Sekar, N., Umasankar, Y., & Ramasamy, R. P. (2014). Photocurrent generation by immobilized cyanobacteria via direct electron transport in photo-bioelectrochemical cells. Physical Chemistry Chemical Physics, 16(17), 7862-7871.
  26. Venkatkarthick, R., Davidson, D. J., Ravichandran, S., Vengatesan, S., Sozhan, G., & Vasudevan, S. (2015). Eco-friendly and facilely prepared silica modified amorphous titania (TiO 2-SiO 2) electrocatalyst for the O 2 and H 2 evolution reactions. Catalysis Science & Technology, 5(11), 5016-5022.
  27. Wang, X. F., Matsuda, A., Koyama, Y., Nagae, H., Sasaki, S. I., Tamiaki, H., & Wada, Y. (2006). Effects of plant carotenoid spacers on the performance of a dye-sensitized solar cell using a chlorophyll derivative: enhancement of photocurrent determined by one electron-oxidation potential of each carotenoid. Chemical physics letters, 423(4-6), 470-475.
  28. Wang, X. F., Zhan, C. H., Maoka, T., Wada, Y., & Koyama, Y. (2007). Fabrication of dye-sensitized solar cells using chlorophylls c1 and c2 and their oxidized forms c1′ and c2′ from Undaria pinnatifida (Wakame). Chemical physics letters, 447(1-3), 79-85.
  29. Yehezkeli, O., Tel-Vered, R., Michaeli, D., Willner, I., & Nechushtai, R. (2014). Photosynthetic reaction center-functionalized electrodes for photo-bioelectrochemical cells. Photosynthesis research, 120(1), 71-85.

Last update:

  1. Chlorophyll Sensitization of TiO2: A Mini-Review

    Maria E. K. Fuziki, Angelo M. Tusset, Onélia A. A. dos Santos, Giane G. Lenzi. Reactions, 4 (4), 2023. doi: 10.3390/reactions4040044

Last update: 2024-06-21 13:57:16

No citation recorded.