skip to main content

Thermogravimetric Analysis and Kinetic Study on Catalytic Pyrolysis of Rice Husk Pellet using Its Ash as a Low-cost In-situ Catalyst

1Chemical Engineering Department, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Surakarta, Indonesia

2Chemical Engineering Department, Universitas Gadjah Mada, Jl. Grafika 2, Yogyakarta, Indonesia

3Center for Energy Studies, Universitas Gadjah Mada, Sekip K1A, Yogyakarta, Indonesia

Received: 7 Oct 2021; Revised: 12 Nov 2021; Accepted: 18 Nov 2021; Available online: 24 Nov 2021; Published: 1 Feb 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The thermogravimetric behaviors and the kinetic parameters of uncatalyzed and catalyzed pyrolysis processes of a mixture of powdered raw rice husk (RRH) and its ash (RHA) in the form of pellets were determined by thermogravimetric analysis at three different heating rates, i.e., 5, 10, and 20 K/min, from 303 to 873 K. This research aimed to prove that the rice husk ash has a catalytic effect on rice husk pyrolysis. To investigate the catalytic effect of RHA, rice husk pellets (RHP) with the weight ratio of RRH:ARH of 10:2 were used as the sample. Model-free methods, namely Friedman (FR), Kissinger-Akahira-Sunose (KAS), and Flynn-Wall-Ozawa (FWO), were used to calculate the apparent energy of activation(EA). The thermogravimetric analysis showed that the decomposition of RHP in a nitrogen atmosphere could be divided into three stages: drying stage (303-443 K), the rapid decomposition stage (443-703 K), and the slow decomposition stage (703-873 K). The weight loss percentages of each stage for both uncatalyzed and catalyzed pyrolysis of RHP were 2.4-5.7%, 35.5-59.4%, and 2.9-12.2%, respectively. Using the FR, FWO, and KAS methods, the values of  for the degrees of conversion (a) of 0.1 to 0.65 were in the range of 168-256 kJ/mol for the uncatalyzed pyrolysis and 97-204 kJ/mol for the catalyzed one. We found that the catalyzed pyrolysis led the  to have values lower than those got by the uncatalyzed one. This phenomenon might prove that RHA has a catalytic effect on RHP pyrolysis by lowering the energy of activation.
Fulltext View|Download
Keywords: rice husk pellet; rice husk ash; pyrolysis; catalytic; thermogravimetric analysis
Funding: Directorate General of Higher Education, Ministry of Research Technology and Higher Education, the Republic of Indonesia

Article Metrics:

  1. Azam, M., Ashraf, A., Jahromy, S.S., Raza, W., Khalid, H., Raza, N., Winter, F.(2020). Isoconversional nonisothermal kinetic analysis of municipal solid waste, refuse-derived fuel, and coal. Energy Science & Engineering, 8, 3728–3739; https://doi.org/10.1002/ese3.778
  2. Cepeliogullar, )., Haykiri-Acma, H., Yaman, S. (2016). Kinetic modelling of RDF pyrolysis: model-fitting and model-free approaches. Waste Management, 48, 275-284; http:// dx.doi.org/10.1016/j.wasman.2015.11.027
  3. Chen, Z. & Zhang, L. (2015). Catalyst and process parameters for the gasification of rice husk with pure CO2 to produce CO. Fuel Processing Technology, 133, 227-231; doi.org/ 10.1016/j.fuproc.2015.01.027
  4. Daniyanto, Sutijan, Deendarlianto, and Budiman, A. (2015). Effect of dry torrefaction on kinetics of catalytic pyrolysis of sugarcane bagasse. Presented on International Conference of Chemical and Material Engineering (ICCME) 2015. AIP Conference Proceedings, 1699, 030017; dx.doi.org/ 10.1063/1.4938302
  5. Eke, J., Onwudili, J.A., Bridgwater, A.V. (2018). Influence of moisture contents on the fast pyrolysis of Trommel Fines in a bubbling bed reactor. Waste and Biomass Valorization; doi.org/10.1007/s12649-018-00560-2
  6. Fu, P., Yi, W., Bai, X., Li, Z., Cai, H., Hu, S., & Xiang, J. (2011). Research on catalytic gasification characteristics and reaction kinetics of rice husk. Asia-Pacific Power and Energy Engineering Conference, APPEEC 2011, Article number 5748763; doi.org/10.1109/appeec.2011.5748763
  7. Gil, M.V., Gonzalez-Vasquez, M.P., Garcia, R., Rubiera, F., Pevida, C. (2019). Assessing the influence of biomass properties on the gasification process using multivariate data analysis. Energy Conversion and Management, 184, 649-660; doi.org/10.1016/j.enconman.2019.01.093
  8. Guo, G., Zhang, K., Liu, C., Xie, S., Li, X., Li, B., Shu, J., Niu, Y., Zhu, H., Ding, M., Zhu, W. (2020). Comparative investigation on thermal decomposition of powdered pelletized biomasses: Thermal conversion charactheristics and apparent kinetics. Bioresource Technology, 301, 122732, 1-9; doi.org/10.1016/j.biortech.2020.122732
  9. Heryadi, R., Uyun, A.S., Nur, S.M., and Abdullah, K. (2019). Single-stage dimethyl ether plant model based on gasification of palm empty fruit bunch. IOP Conf. Series: Materials Science and Engineering 532 (2019) 012009; doi.org/10.1088/1757-899X/532/1/012009
  10. Heydari, M., Rahman, M., Gupta, R. (2015). Kinetic study and thermal decomposition behavior of lignite coal. International Journal of Chemical Engineering 2015, Article ID 481739. http://dx.doi.org/10.1155/2015/481739
  11. Jamilatun, S., Budiman, A., Budhijanto, Rochmadi. (2017a). Non-catalytic slow pyrolysis of Spirulina Platensis residue for production of liquid biofuel. International Journal of Renewable Energy Research, 7 (4), 1901-1908; ISSN: 1309-0127
  12. Jamilatun, S., Budhijanto, Rochmadi and Budiman, A. (2017b). Thermal decomposition and kinetic studies of pyrolysis of Spirulina platensis residue. International Journal of Renewable Energy Development, 6 (3), 193-201; doi.org/ 10.14710/ijred.6.3.193-201
  13. Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., Budiman, A. (2019). Effect of grain size, temperature and catalyst amount on pyrolysis products of Spirulina Platensis residue (SPR). International Journal of Technology, 10 (3), 541-550; dx.doi.org/10.14716/ijtech.v10i3.2918
  14. Jenkins, B.M., Baxter, L.L., Miles Jr., T.R., Miles, T.R. (1998). Combustion properties of biomass. Fuel Processing Technology, 54,17-46;doi.org/10.1016/S0378-3820(97)00059-3
  15. Jiang, G. and Wei, L. (2018). Phase Change Materials and Their Application, Chapter 8: Analysis of pyrolysis kinetic model for processing of thermogravimetric analysis data, pp 143-163; dx.doi.org/10.5772/intechopen.79226
  16. Jiang, L., Hu, S., Wang, Y., Su, S., Sun, L., Xu, B., He, L., Xiang, J. (2015). Catalytic effects of inherent alkali and alkaline earth metallic species on steam gasification of biomass. International Journal of Hydrogen Energy, 40, 15460-15469; doi.org/10.1016/j.ijhydene.2015.08.111
  17. Kajita, M., Kimura, T., Norinaga, K., Li, C., Hayashi, J. (2010). Catalytic and noncatalytic mechanisms in steam gasification of char from the pyrolysis of biomass. Energy & Fuels, 24, 108-116; doi.org/10.1021/ef900513a
  18. Kaur, R., Gera, P., Jha, M.K., Bhaskar, T. (2018). Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresources Technology, 250, 422–428; doi.org/10.1016/ j.biortech.2017.11.077
  19. Khonde, R., Nanda, J., Chaurasia, A. (2017). Experimental investigation of catalytic cracking of rice husk tar for hydrogen production. Journal of Material Cycles and Waste Management, 20 (2), 1310-1319; doi.org/ 10.1007/s10163-017-0695-0
  20. Li, J., Liu, J., Liao, S., Yan, R. (2010). Hydrogen-rich gas production by air-steam gasification of rice husk using supported nano-NiO/-Al2O3 catalyst. International Journal of Hydrogen Energy, 35, 7399-7404; doi.org/10.1016/ j.ijhydene.2010.04.108
  21. Loy, A.C.M., Gan, D.K.W., Yusup, S., Chin, B.L.F., Lam, M.K., Shahbaz, M., Unrean, P., Acda, M.N., and Rianawati, E. (2018). Thermogravimetric kinetic modeling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst. Bioresource Technology, 261, 213-222; doi.org/10.1016/j.biortech.2018.04.020
  22. Parthasarathy, P. and Narayanan, K.S. (2014). Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield – A review. Renewable Energy, 66, 570-579; doi.org/10.1016/j.renene.2013.12.025
  23. Prabahar, R.S.S., Nagaraj, H., Jeyasubramanian, K. (2019). Enhanced recovery of H2 gas from rice husk and its char enabled with nano catalytic pyrolysis/gasification. Microchemical Journal, 146, 922-930; doi.org/10.1016/ j.microc.2019.02.024
  24. Pradana, Y.S., Daniyanto, Hartono, M., Prasakti, L., Budiman, A. (2019). Effect oc calcium and magnesium catalyst on pyrolysis kinetic of Indonesian sugarcane bagasse for biofuel production. Energy Procedia, 158, 431-439; doi.org/ 10.1016/j.egypro.2019.01.128
  25. Prakash, P., & Sheeba, K. N. (2016). Prediction of pyrolysis and gasification characteristics of different biomass from their Physico-chemical properties. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(11), 1530–1536; doi.org/10.1080/15567036.2014.953713
  26. Prasara-A, J., Gheewala, S.H. (2017). Sustainable utilization of rice husk ash from power plants: A review. Journal of Cleaner Production, 167, 1020-1028; doi.org/10.1016/ j.jclepro.2016.11.042
  27. Quiroga, E., Molto, J., Conesa, J.A., Valero, M.F., Cobo, M. (2020). Kinetics of the catalytic thermal degradation of Sugarcane residual biomass over Rh-Pt/CeO2-SiO2 for syngas production. Catalysts, 10, 508, 1-20; doi.org/10.3390/ catal10050508
  28. Rasool, T., Srivastava, V.C., Khan, M.N.S. (2018). Kinetic and thermodynamic analysis of thermal decomposition of Deodar (Cedrus Deodara) saw dust and rice husk as potential feedstock for pyrolysis. International Journal of Chemical Reactor Engineering, 20170184; doi: 10.1515/ijcre-2017-0184
  29. Rei, M.H, Yang, S.J., and Hong, C.H. (1986). Catalytic gasification of rice hull and other biomass. The general effect of catalyst. Agricultural Wastes, 18, 269-281; doi.org/ 10.1016/0141-4607(86)90072-7
  30. Rong, C., Li, B., Liu, W., Zhao, N. (2018). The effect of oyster shell powder & rice husk ash on the pyrolysis of rice husk for bio-oil. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 40(11), 1291-1304; doi.org/10.1080/ 15567036.2018.1469690
  31. Sahraei, O.A.Z., Larachi, F., Abatzoglou, N., & Iliuta, M. C. (2017). Hydrogen production by glycerol steam reforming catalyzed by Ni-promoted Fe/Mg-bearing metallurgical wastes. Applied Catalysis B: Environmental, 219, 183–193; doi.org/10.1016/j.apcatb.2017.07.039
  32. Said, M.M., John, G.R., Mhilu, C.F. (2014). Thermal charactheristics and kinetics of rice husk for pyrolysis process. International Journal of Renewable Energy Research, 4 (2), 275-278; www.ijrer.org/ijrer/index.php/ijrer/ article/view/1120
  33. Salman, C.A., Naqvi, M., Thorin, E., and Yan, J. (2018). Gasification process integration with existing combined heat and power plants for poly-generation of dimethyl ether or methanol: A detailed profitability analysis. Applied Energy, 226, 116-128; doi.org/ 10.1016/j.apenergy.2018.05.069
  34. Sarkar, J.K. and Wang, Q. (2020). Characterization of pyrolysis products and kinetic analysis of waste Jute Stick biomass. Processes, 8, 837; doi: 10.3390/pr8070837
  35. Shen, Y., Zhao, P., Ma, D., Yoshikawa, K. (2014a). Tar in-situ conversion for biomass gasification via mixing-simulation with rice husk char-supported catalysts. Energy Procedia, 61, 1549-1552; doi.org/10.1016/j.egypro.2014.12.167
  36. Shen, Y., Zhao, P., Shao, Q., Ma, D., Takahashi, F., Yoshikawa, K. (2014b). In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification. Applied Catalysis B: Environmental, 152-153, 140-151; doi.org/10.1016/j.apcatb.2014.01.032
  37. Shen, Y., Zhao, P., Shao, Q., Takahashi, F., Yoshikawa, K. (2015). In-situ catalytic conversion of tar using rice husk char/ash supported nickel-iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in a fluidized-bed gasifier. Applied Energy, 160, 808-819; doi.org/10.1016/j.apenergy.2014.10.074
  38. Slopiecka, K., Bartocci, P., Fantozzi, F. (2012). Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy, 97, 491-497; doi.org/10.1016/j.apenergy.2011.12.056
  39. Thakkar, M., Makwana, J.P., Mohanty, P., Shah, M., Singh, V. (2016). In bed catalytic tar reduction in the auto-thermal fluidized bed gasification of rice husk: Extraction of silica, energy and cost analysis. Industrial Crops and Products, 87, 324-332; doi.org/10.1016/j.indcrop.2016.04.031
  40. Turmanova, S. (2008). Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym. Lett.; doi.org/ 10.3144/expresspolymlett.2008.18
  41. Vyazovkin, S. (2021). Determining preexponential factor in model-free kinetic methods: How and Why?. Molecules, 26, 3077; https://doi.org/10.3390/molecules26113077
  42. Wang, S-W, Li, D-X., Ruan, W-B., Jin, C-L., and Farahani, M.R. (2018). A techno-economic review of biomass gasification for production of chemicals. Energy Sources, Part B: Economics, Planning, and Policy, 13(8), 351-356; doi.org/10.1016/ j.egypro.2017.03.1111
  43. Wang, Z. & Xiong, Y. (2020). Simultaneous improvement in qualities of bio-oil and syngas from catalytic pyrolysis of rice husk by demineralization. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects (Article in press); doi.org/10.1080/15567036.2020.1824038
  44. Widiyannita, A.M., Pradana, Y.S., Cahyono, R.B., Sutijan, Akiyama, T., Budiman, A. (2020). Kinetic study of pyrolysis of Ulin wood residue using thermogravimetric analysis. International Journal on Anvanced Science Engineering Information Technology, 10 (4), 1624-1630; doi.org/10.18517/ ijaseit.10.4.3640
  45. Xiang, Z., Liang, J., Morgan, H.M., Liu, Y., Mao, H., BU., Q. (2018). Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis. Bioresources Technology, 146, 485-493; doi.org/10.1016/ j.biortech.2017.09.178
  46. Xu, Y., and Chen, B. (2013). Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresources Technology, 146, 485–493; doi.org/10.1016/ j.biortech.2013.07.086
  47. Yan, J., Jiao, H., Li, Z., Lei, Z, Wang, Z., Ren, S., Shui, H., Kang, S., Yan, H., Pan, C. (2019). Kinetic analysis and modeling of coal pyrolysis eith model-free methods. Fuel, 241, 382-391; https://doi.org/10.1016/j.fuel.2018.12.079
  48. Yoon, S.J., Son, Y.I, Kim, Y.K., and Lee, J.G. (2012). Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier. Renewable Energy, 42, 163-167; doi.org/10.1016/j.renene.2011.08.028
  49. Yuan, R. and Shen, Y. (2019). Catalytic pyrolysis of biomass-plastic wastes in the presence of MgO and MgCO3 for hydrocarbon-rich oils production. Bioresources Technology, 293, 122076; doi.org/10.1016/j.biortech.2019.122076
  50. Yuan, R., Yu, S., Shen, Y. (2019). Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agroforestry residues. Waste Management, 87, 86-96; doi.org/10.1016/j.wasman.2019.02.009
  51. Yudiartono, A., Sugiyono, A., Wahid, L.M.A., Adiarso. (2018). Indonesia Energy Outlook 2018, Sustainable Energy for Land Transportation. Center of Assessment for Process and Energy Industry - Agency for the Assessment and Application of Technology, Jakarta, Indonesia. ISBN 978-602-1328-05-7. www.bppt.go.id

Last update:

No citation recorded.

Last update:

No citation recorded.