skip to main content

Impact of Photovoltaic Panel Orientation and Elevation Operating Temperature on Solar Photovoltaic System Performance

Department of Mechanical Engineering, Institute for Systems Science, Durban University of Technology, Durban, South Africa

Received: 28 Dec 2021; Revised: 24 Feb 2022; Accepted: 20 Mar 2022; Available online: 15 Apr 2022; Published: 5 May 2022.
Editor(s): Soulayman Soulayman
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study conducts optimum tilt angle and orientation of a standalone c-Si monocrystalline solar photovoltaic (PV) system deploying PVsyst software. The site of the hypothesized solar PV system is at 9, Mountain Rise, Berea, Durban, South Africa. This work presents values of tilt and azimuth angles and battery operating temperature that support optimal solar PV system performance. The range of angles considered for tilt and azimuth for a fixed PV panel mounting is 0° to 90° and -100° to 100°, respectively. Based on the report obtained from PVsyst design and simulation software, this study finds that: the highest available energy, specific energy, used energy, solar fraction, and lowest loss were recorded at tilt 40° and Azimuth 0°. Further, the longest battery service life was attained at an operating temperature between -2 °C to 20 °C. Hence, 40° and 0° are the optimum tilt and Azimuth angles, respectively while running the storage system at a temperature, not more than 20 °C.

Fulltext View|Download
Keywords: Solar photovoltaic; PV panel orientation; Optimum tilt and Azimuth angles; Battery service life; Solar battery operating temperature

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. Asl-Soleimani, E., Farhangi, S., & Zabihi, M. S. (2001). The effect of tilt angle, air pollution on performance of photovoltaic systems in Tehran. Renewable Energy, 24(3), 459-468. doi:
  2. Axelevitch, A., & Golan, G. (2013). Improvement of PV Cell Efficiency by Rectifying Antenna. Energy Procedia, 38, 404-409. doi: org/10.1016/j.egypro.2013.07.296
  3. Bakirci, K. (2012). General models for optimum tilt angles of solar panels: Turkey case study. Renewable and Sustainable Energy Reviews, 16(8), 6149-6159. doi: org/10.1016/j.rser.2012.07.009
  4. Barbón, A., Bayón-Cueli, C., Bayón, L., & Rodríguez-Suanzes, C. (2022). Analysis of the tilt and azimuth angles of photovoltaic systems in non-ideal positions for urban applications. Applied Energy, 305, 117802. doi: org/10.1016/j.apenergy.2021.117802
  5. Burger, B., & Rüther, R. (2006). Inverter sizing of grid-connected photovoltaic systems in the light of local solar resource distribution characteristics and temperature. Solar Energy, 80(1), 32-45. doi: org/10.1016/j.solener.2005.08.012
  6. Chang, T. P. (2009). The Sun’s apparent position and the optimal tilt angle of a solar collector in the northern hemisphere. Solar Energy, 83(8), 1274-1284. doi: org/10.1016/j.solener.2009.02.009
  7. Chen, X. M., Li, Y., Zhao, Z. G., Ma, T., & Wang, R. Z. (2018). General method to obtain recommended tilt and azimuth angles for photovoltaic systems worldwide. Solar Energy, 172, 46-57. doi: org/10.1016/j.solener.2018.06.045
  8. Deb, S. K. (2000). Chapter 584 - Recent Developments in High-Efficiency PV Cells. In A. A. M. Sayigh (Ed.), World Renewable Energy Congress VI (pp. 2658-2663). Oxford: Pergamon
  9. Ebhota, W. S., & Jen, T.-C. (2020). Fossil Fuels Environmental Challenges and the Role of Solar Photovoltaic Technology Advances in Fast Tracking Hybrid Renewable Energy System. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(1), 97-117. doi: 10.1007/s40684-019-00101-9
  10. Ebhota, W. S., & Tabakov, P. Y. (2019). Power Supply and the Place Hydropower in sub-Saharan Africa’s Modern Energy System and Socioeconomic Wellbeing. International Journal of Energy Economics and Policy, 9(2), 347-363 doi: org/10.32479/ijeep.7184
  11. Ebhota, W. S., & Tabakov, P. Y. (2021). Assessment of solar PV potential and performance of a household system in Durban North, Durban, South Africa. Clean Technologies and Environmental Policy. doi: 10.1007/s10098-021-02241-6
  12. Elminir, H. K., Ghitas, A. E., El-Hussainy, F., Hamid, R., Beheary, M. M., & Abdel-Moneim, K. M. (2006). Optimum solar flat-plate collector slope: Case study for Helwan, Egypt. Energy Conversion and Management, 47(5), 624-637. doi: https://doi.org/10.1016/j.enconman.2005.05.015
  13. Feldman, D., O’Shaughnessy, E., & Margolis, R. (2020). Q3/Q4 2019 Solar Industry Update. Retrieved from The National Renewable Energy Laboratory (NREL), USA: https://www.nrel.gov/docs/fy20osti/76158.pdf
  14. Gabrisch, H., Ozawa, Y., & Yazami, R. (2006). Crystal structure studies of thermally aged LiCoO2 and LiMn2O4 cathodes. Electrochimica Acta, 52, 1499-1506
  15. González-González, E., Martín-Jiménez, J., Sánchez-Aparicio, M., Del Pozo, S., & Lagüela, S. (2022). Evaluating the standards for solar PV installations in the Iberian Peninsula: Analysis of tilt angles and determination of solar climate zones. Sustainable Energy Technologies and Assessments, 49, 101684. doi: org/10.1016/j.seta.2021.101684
  16. Gulomov, J., Aliev, R., Mirzaalimov, A., Mirzaalimov, N., Kakhkhorov, J., Rashidov, B., & Temirov, S. (2021). Studying the Effect of Light Incidence Angle on Photoelectric Parameters of Solar Cells by Simulation. 2021, 10(4), 6. doi: 10.14710/ijred.2021.36277
  17. Guo, M., Zang, H., Gao, S., Chen, T., Xiao, J., Cheng, L., . . . Sun, G. (2017). Optimal Tilt Angle and Orientation of Photovoltaic Modules Using HS Algorithm in Different Climates of China. Applied Sciences, 7(10), 1028
  18. Hailu, G., & Fung, A. S. (2019). Optimum Tilt Angle and Orientation of Photovoltaic Thermal System for Application in Greater Toronto Area, Canada. Sustainability, 11(22), 6443
  19. Heywood, & H. (1971). Operating experience with solar water heating. Journal of the Institution of Heating and Ventilation Engineers, 39, 63-69
  20. Hottel, H., & Woertz, B. (1942). Performance of flat-plate solar-heat collectors. Trans. ASME (Am. Soc. Mech. Eng.); (United States), 64, Medium: X; Size: Pages: 91 2009-2012-2016
  21. Hussein, H. M. S., Ahmad, G. E., & El-Ghetany, H. H. (2004). Performance evaluation of photovoltaic modules at different tilt angles and orientations. Energy Conversion and Management, 45(15), 2441-2452. doi: org/10.1016/j.enconman.2003.11.013
  22. Jäger, K., Isabella, O., Smets, A. H. M., Swaaij, R. A. C. M. M. v., & Zeman, M. (2014). Solar Energy: Fundamentals, Technology, and Systems. Netherland Delft University of Technology
  23. Kabbani, A., & Mohamed Shaik, H. (2021). PV Cell Parameters Modeling and Temperature Effect Analysis. 2021, 10(3), 9. doi: 10.14710/ijred.2021.33845
  24. Kaldellis, J., & Zafirakis, D. (2012). Experimental investigation of the optimum photovoltaic panels’ tilt angle during the summer period. Energy, 38(1), 305-314. doi: org/10.1016/j.energy.2011.11.058
  25. Kar, P., & Evans, J. W. (2008). A model for the electrochemical reduction of metal oxides in molten salt electrolytes. Electrochimica Acta, 54, 835-843
  26. Kern, J., & Harris, I. (1975). On the optimum tilt of a solar collector. Solar Energy, 17(2), 97-102. doi: org/10.1016/0038-092X(75)90064-X
  27. Khezri, R., Mahmoudi, A., & Aki, H. (2022). Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives. Renewable and Sustainable Energy Reviews, 153, 111763. doi: org/10.1016/j.rser.2021.111763
  28. Le Roux, W. G. (2016). Optimum tilt and azimuth angles for fixed solar collectors in South Africa using measured data. Renewable Energy, 96, 603-612. doi: org/10.1016/j.renene.2016.05.003
  29. Libra, M., & Poulek, V. (2022). Influence of Temperature on Important Characteristics of Photovoltaic Cells. In A. Al-Ahmed, Inamuddin, F. A. Al-Sulaiman, & F. Khan (Eds.), The Effects of Dust and Heat on Photovoltaic Modules: Impacts and Solutions (pp. 291-306). Cham: Springer International Publishing
  30. Löf, G. O. G., & Tybout, R. A. (1973). Cost of house heating with solar energy. Solar Energy, 14(3), 253-278. doi: org/10.1016/0038-092X(73)90094-7
  31. Mandi, B., Menni, Y., Chamkha, A. J., Lorenzini, G., Kaid, N., Bibi-Triki, N., . . . Sahel, D. (2019). Effect of various physical parameters on the productivity of the hybrid distiller - in the time of distillation extension at night. European Journal of Electrical Engineering, 21(3 ), 265-271
  32. Markevich, E., Pollak, E., Salitra, G., & Aurbach, D. (2007). On the performance of graphitized meso carbon microbeads (MCMBI meso carbon fibers (MCF) and synthetic graphite electrodes at elevated temperatures. Journal of Power Sources, 174, 1263-1269
  33. Mindat.org. (2022). The Köppen Climate Classification. Retrieved from https://www.mindat.org/climate.php
  34. Mondol, J. D., Yohanis, Y. G., & Norton, B. (2007). The impact of array inclination and orientation on the performance of a grid-connected photovoltaic system. Renewable Energy, 32(1), 118-140. doi: org/10.1016/j.renene.2006.05.006
  35. NREL. (2007). Discovery to improve efficiency of PV solar cells? Renewable Energy Focus, 8(5), 14. doi: org/10.1016/S1471-0846(07)70136-1
  36. Oon, L.-V., Tan, M.-H., Wong, C.-W., & Chong, K.-K. (2020). Optimization study of solar farm layout for concentrator photovoltaic system on azimuth-elevation sun-tracker. Solar Energy, 204, 726-737. doi: org/10.1016/j.solener.2020.05.032
  37. Ouédraogo, A., Zouma, B., Ouédraogo, E., Guissou, L., & Bathiébo, D. J. (2021). Individual efficiencies of a polycrystalline silicon PV cell versus temperature. Results in Optics, 4, 100101. doi: org/10.1016/j.rio.2021.100101
  38. Pickerel, K. (2018, 06/02/2022). What is thin-film solar? Solar Power World
  39. Prine-Robie, & Michael. (2020). How Does Temperature Affect Battery Performance? Retrieved from https://www.cedgreentech.com/article/how-does-temperature-affect-battery-performance
  40. Sari-Ali, I., Rahmoun, K., Chikh-Bled, B., Benyoucef, B., Menni, Y., Ghazvini, M., . . . Ahmadi, M. H. (2020). Mono-crystalline silicon photovoltaic cells under different solar irradiation levels. Optik, 223, 165653. doi: org/10.1016/j.ijleo.2020.165653
  41. Senthil Kumar, K., Ashwin Kumar, H., Gowtham, P., Hari Selva Kumar, S., & Hari Sudhan, R. (2021). Experimental analysis and increasing the energy efficiency of PV cell with nano-PCM (calcium carbonate, silicon carbide, copper). Materials Today: Proceedings, 37, 1221-1225. doi: https://doi.org/10.1016/j.matpr.2020.06.430
  42. Shi, J., & Lin, C.-X. (2019). Computational Simulation and Analysis of Major Control Parameters of Time-Dependent PV/T Collectors. Paper presented at the ASME 2019 International Mechanical Engineering Congress and Exposition
  43. Stevens, T. H. (1977). The Economics of Solar Home Heating Systems for the Southwest resion.. The Journal of Energy and Development, 2(2), 279-291
  44. Sunmaster. (2019). What is the maximum and minimum temperature Solar Batteries can support? Retrieved from https://www.solarlightsmanufacturer.com/temperature-solar-batteries/
  45. Suri, M., Cebecauer, T., Skoczek, A., & Betak, J. (2012). Solar electricity production from fixed-inclined and sun-tracking c-Si photovoltaic modules in South Africa. Paper presented at the 1st Southern African Solar Energy Conference (SASEC)
  46. UN. (2021). Glasgow COP26: Uniting the world to tackle climate change. Paper presented at the 26th The United Nations (UN) Climate Change Conference of the Parties (COP26) Glasgow, UK https://ukcop26.org/
  47. UNFCCC. (2021). Outcomes of the Glasgow Climate Change Conference. Retrieved from United Nations Framework Convention on Climate Change (UNFCCC): https://unfccc.int/conference/glasgow-climate-change-conference-october-november-2021
  48. Ventura, C., Tina, G. M., Gagliano, A., & Aneli, S. (2021). Enhanced models for the evaluation of electrical efficiency of PV/T modules. Solar Energy, 224, 531-544. doi: org/10.1016/j.solener.2021.06.018
  49. Wu, Y., Keil, P., Schuster, S. F., & Jossen, A. (2017). Impact of Temperature and Discharge Rate on the Aging of a LiCoO2/LiNi0.8Co0.15Al0.05O2Lithium-Ion Pouch Cell. Journal of the Electrochemical Society, 164(7), A1438-A1445. doi: 10.1149/2.0401707jes
  50. Yadav, S., Panda, S. K., & Hachem-Vermette, C. (2020). Method to improve performance of building integrated photovoltaic thermal system having optimum tilt and facing directions. Applied Energy, 266, 114881. doi: org/10.1016/j.apenergy.2020.114881
  51. Yellott, J. (1975). Utilization of Sun and Sky Radiation for Heating and Cooling of Building. The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea, 4(4), 309-325

Last update:

  1. Performance ratio of the PLTS system for blue swimming crab handling on the boat in field testing and PVsyst software simulation

    Ari Kuncoro, Ahmad Agus Setiawan, Moh Natsir, Suparman Sasmita, Susilo Wisnugroho, Nanang Setiyobudi, Zarochman, Hufiadi, Sri Suryo Sukoraharjo, Zainal Wassahua, Sofiyan Muji Permana, Rodiah Nurbaya Sari, Kuncoro Catur Nugroho, Bambang Arif Nugraha, J. Santoso, Nurjanah, T. Nurhayati, S. Watabe, K. Konno, Uju, B. Ibrahim, M. Kaeriyama, N. Tanaka, S.H. Suseno, T.M.H. Tran, S. Purwaningsih, C. Yuan, Y. Ochiai, W. Trilaksani, Y. Hu, Y. Xiong, I. Setyaningsih, S. Miao. BIO Web of Conferences, 147 , 2024. doi: 10.1051/bioconf/202414701022
  2. Offshore solar photovoltaic potential in the seas around China

    Yi Wen, Pengzhi Lin. Applied Energy, 376 , 2024. doi: 10.1016/j.apenergy.2024.124279
  3. Techno-economic analysis of fixed versus sun-tracking solar panels

    Akram Elahi Gol, Milan Ščasný. International Journal of Renewable Energy Development, 12 (3), 2023. doi: 10.14710/ijred.2023.50165
  4. Multiparameter Regression of a Photovoltaic System by Applying Hybrid Methods with Variable Selection and Stacking Ensembles under Extreme Conditions of Altitudes Higher than 3800 Meters above Sea Level

    Jose Cruz, Christian Romero, Oscar Vera, Saul Huaquipaco, Norman Beltran, Wilson Mamani. Energies, 16 (12), 2023. doi: 10.3390/en16124827
  5. Design and implementation of an integrated sun tracking and autocleaning system for photovoltaic panels

    Chogueur Djilali, Bentouba Said, Bourouis Mahmoud . STUDIES IN ENGINEERING AND EXACT SCIENCES, 5 (2), 2024. doi: 10.54021/seesv5n2-638
  6. Energy losses in crystalline silicon rooftop photovoltaic systems in selected site locations in Sub-Saharan Africa

    Williams S. Ebhota, Pavel Y. Tabakov. International Journal of Renewable Energy Development, 13 (3), 2024. doi: 10.61435/ijred.2024.57529
  7. LCA analysis of a roof mounted PV system: a Romanian case study

    Tania Rus, Raluca-Paula Moldovan, Miguel Ángel Pardo Picazo. Frontiers in Environmental Science, 12 , 2024. doi: 10.3389/fenvs.2024.1413629
  8. A Comprehensive Review of Solar Photovoltaic (PV) Technologies, Architecture, and Its Applications to Improved Efficiency

    Sai Nikhil Vodapally, Mohd Hasan Ali. Energies, 16 (1), 2022. doi: 10.3390/en16010319
  9. The Influence of the Installation Condition and Performance of Bifacial Solar Modules on Energy Yield

    Caixia Zhang, Honglie Shen, Hongzhi Liu. Energies, 16 (21), 2023. doi: 10.3390/en16217396

Last update: 2025-01-21 20:24:18

No citation recorded.