skip to main content

Sustainable Design of a Near-Zero-Emissions Building Assisted by a Smart Hybrid Renewable Microgrid

1Department of Mechanical and Biosystems Engineering, Tarbiat Modares University (TMU), Tehran, Iran, Islamic Republic of

2Advanced Material Research Cluster, Faculty of Bioengineering and Technology, University of Malaysia Kelantan, Jeli, Kelantan, Malaysia

Received: 2 Jan 2022; Revised: 8 Feb 2022; Accepted: 15 Feb 2022; Available online: 25 Feb 2022; Published: 5 May 2022.
Editor(s): Grigorios Kyriakopoulos
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Renewable energy regulations place a premium on both the use of renewable energy sources and energy efficiency improvements. One of the growing milestones in building construction is the invention of green cottages. Building Integrated Photovoltaic (BIPV) technologies have been proved to aid buildings that partially meet their energy demand as sustainable solar energy generating technologies throughout the previous decade. Curved facades provide a challenge for typical photovoltaics. This study designed, produced, and assessed elastic solar panels supported by flexible photovoltaic systems (FPVS) on a 1 m2 layer. The LabVIEW program recognizes and transmits online data on warm and dry climates. The fill factor was 88% and 84%, respectively, when installed on the silo and biogas surfaces. The annual energy output was 810 kWh on a flat surface, 960 kWh on a cylindrical surface, and 1000 kWh on a hemisphere surface. Economic analysis indicates that the NPV at Flat surface is $ 697.52, with an IRR of 34.81% and an 8.5-year capital return period. Cylindrical surfaces and hemispheres both get a $ 955.18 increase. For cylindrical and hemispheric buildings, the investment yield was 39.29% and 40.47%, respectively. A 20% increase in fixed investment boosted the IRR by 21.3% in the flat system. While the cylindrical system had a 25.59% raise, the hemisphere saw a 24.58% gain
Fulltext View|Download
Keywords: Renewable Energy; Building Integrated Photovoltaic; Sustainable; Flexible Photovoltaic Systems; LabVIEW.

Article Metrics:

  1. Abdolbaqi, M. K., Azmi, W. H., Mamat, R., Mohamed, N. M. Z. N., & Najafi, G. (2016). Experimental investigation of turbulent heat transfer by counter and co-swirling flow in a flat tube fitted with twin twisted tapes. International Communications in Heat and Mass Transfer, C(75), 295–302. doi: 10.1016/J.ICHEATMASSTRANSFER.2016.04.021
  2. Al-Falahi, M. D. A., Jayasinghe, S. D. G., & Enshaei, H. (2019). Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries. Energy, 187, 115923. doi: 10.1016/J.ENERGY.2019.115923
  3. Awad, O. I., Ali, O. M., Mamat, R., Abdullah, A. A., Najafi, G., Kamarulzaman, M. K., Yusri, I. M., & Noor, M. M. (2017). Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review. Renewable and Sustainable Energy Reviews, 69, 1232–1242. doi: 10.1016/J.RSER.2016.11.244
  4. Azadbakht, M., Shayan, M. E., Jafari, H., Ghajarjazi, E., & Kiapei, A. (2015). Factor Resistance Comparison of a Long Shaft in 955 and 1055 John Deere Grain Combine. doi: 10.5281/ZENODO.1100909
  5. Azadbakht, M., Esmaeilzadeh, E., & Esmaeili-Shayan, M. (2015). Energy consumption during impact cutting of canola stalk as a function of moisture content and cutting height. Journal of the Saudi Society of Agricultural Sciences, 14(2), 147–152. doi: 10.1016/j.jssas.2013.10.002
  6. Azadbakht, M., Shayan, M. E., & Jafari, H. (2013). Investigation of Long Shaft Failure in John Deere 955 Grain Combine Harvester under Static Load. Universal Journal of Agricultural Research, 1(3), 70–73. doi: 10.13189/UJAR.2013.010305
  7. Bloem, J. J. J., Lodi, C., Cipriano, J., & Chemisana, D. (2012). An outdoor Test Reference Environment for double skin applications of Building Integrated PhotoVoltaic Systems. Energy and Buildings, 50, 63–73. doi: 10.1016/j.enbuild.2012.03.023
  8. Braito, M., Flint, C., Muhar, A., Penker, M., & Vogel, S. (2017). Individual and collective socio-psychological patterns of photovoltaic investment under diverging policy regimes of Austria and Italy. Energy Policy, 109, 141–153. doi: 10.1016/J.ENPOL.2017.06.063
  9. Briguglio, M., & Formosa, G. (2017). When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights. Energy Policy, 108, 154–162. doi: 10.1016/J.ENPOL.2017.05.039
  10. Chen, J., E, J., Kang, S., Zhao, X., Zhu, H., Deng, Y., Peng, Q., & Zhang, Z. (2019). Modeling and characterization of the mass transfer and thermal mechanics of the power lithium manganate battery under charging process. Energy, 187, 115924. doi: 10.1016/J.ENERGY.2019.115924
  11. Dehghan, M., Rahgozar, S., Pourrajabian, A., Aminy, M., & Halek, F. S. (2021). Techno-economic perspectives of the temperature management of photovoltaic (PV) power plants: A case-study in Iran. Sustainable Energy Technologies and Assessments, 45, 101133. doi: 10.1016/j.seta.2021.101133
  12. Esmaeili Shayan, M. (2020). Solar Energy and Its Purpose in Net-Zero Energy Building. In A. Pérez-Fargallo & I. Oropeza-Perez (Eds.), Zero-energy Buildings. New approaches and technologies. IntechOpen. doi: 10.5772/intechopen.93500
  13. Esmaeili Shayan, M., Esmaeili Shayan, S., & Nazari, A. (2021). Possibility of supplying energy to border villages by solar energy sources. Energy Equipment and Systems, 9(3), 279–289. doi: 10.22059/EES.2021.246079
  14. Esmaeili Shayan, M., & Ghasemzadeh, F. (2020). Nuclear Power Plant or Solar Power Plant. In N. Awwad (Ed.), Nuclear Power Plants - The Processes from the Cradle to the Grave. Landon: IntechOpen. doi: 10.5772/intechopen.92547
  15. Esmaeili Shayan, M., & Hojati, J. (2021). Floating Solar Power Plants: A Way to Improve Environmental and Operational Flexibility. Iranian (Iranica) Journal of Energy & Environment, 0. Retrieved from http://www.ijee.net/article_140620.html
  16. Esmaeili shayan, M., Najafi, G., & Gorjian, S. (2020). Design Principles and Applications of Solar Power Systems (In Persian) (First Edit). Tehran: ACECR Publication- Amirkabir University of Technology Branch
  17. Esmaeili Shayan, M., Najafi, G., & Lorenzini, G. (2022). Phase change material mixed with chloride salt graphite foam infiltration for latent heat storage applications at higher temperatures and pressures. International Journal of Energy and Environmental Engineering 2021, 1–11. doi: 10.1007/S40095-021-00462-5
  18. Esmaeili Shayan, M., Najafi, G., & Nazari, A. (2021). The Biomass Supply Chain Network Auto-Regressive Moving Average Algorithm. International Journal of Smart Grid - IjSmartGrid, 5(1), 15–22. Retrieved from https://www.ijsmartgrid.ijrer.org/index.php/ijsmartgridnew/article/download/153/pdf
  19. Ettefaghi, E., Ghobadian, B., Rashidi, A., Najafi, G., Khoshtaghaza, M. H., Rashtchi, M., & Sadeghian, S. (2018). A novel bio-nano emulsion fuel based on biodegradable nanoparticles to improve diesel engines performance and reduce exhaust emissions. Renewable Energy, 125, 64–72. doi: 10.1016/j.renene.2018.01.086
  20. Ghasemzadeh, F., Esmaeilzadeh, M., & Esmaeili shayan, M. (2020). Photovoltaic Temperature Challenges and Bismuthene Monolayer Properties. International Journal of Smart Grid, 4(4), 190–195. Retrieved from https://www.ijsmartgrid.org/index.php/ijsmartgridnew/article/view/131/pdf
  21. Ghritlahre, H. K., & Prasad, R. K. (2018). Application of ANN technique to predict the performance of solar collector systems - A review. Renewable and Sustainable Energy Reviews, 84(December 2017), 75–88. doi: 10.1016/j.rser.2018.01.001
  22. Hasanien, H. M. (2018). Performance improvement of photovoltaic power systems using an optimal control strategy based on whale optimization algorithm. Electric Power Systems Research, 157, 168–176. doi: 10.1016/j.epsr.2017.12.019
  23. IEA. (2021). Global Energy Review 2021 – Analysis - IEA. Retrieved from https://www.iea.org/reports/global-energy-review-2021
  24. Jäger-Waldau, A. (2021). Overview of the Global PV Industry. Reference Module in Earth Systems and Environmental Sciences. doi: 10.1016/B978-0-12-819727-1.00054-6
  25. Padmanathan K., Govindarajan, U., Vigna K., Selvi T, S., Jeevarathinam, B. (2018). Integrating solar photovoltaic energy conversion systems into industrial and commercial electrical energy utilization—A survey. Journal of Industrial Information Integration. doi: 10.1016/j.jii.2018.01.003
  26. Keshtegar, B., Mert, C., & Kisi, O. (2018). Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree. Renewable and Sustainable Energy Reviews, 81(July 2017), 330–341. doi: 10.1016/j.rser.2017.07.054
  27. Leonard, M. D., & Michaelides, E. E. (2018). Grid-independent residential buildings with renewable energy sources. Energy, 148, 448–460. doi: 10.1016/J.ENERGY.2018.01.168
  28. Liobikienė, G., & Butkus, M. (2021). Determinants of greenhouse gas emissions: A new multiplicative approach analysing the impact of energy efficiency, renewable energy, and sector mix. Journal of Cleaner Production, 309, 127233. doi: 10.1016/J.JCLEPRO.2021.127233
  29. Mat Yasin, M. H., Mamat, R., Najafi, G., Ali, O. M., Yusop, A. F., & Ali, M. H. (2017). Potentials of palm oil as new feedstock oil for a global alternative fuel: A review. Renewable and Sustainable Energy Reviews, 79, 1034–1049. doi: 10.1016/J.RSER.2017.05.186
  30. Mohammadi, M., Ghasempour, R., Razi Astaraei, F., Ahmadi, E., Aligholian, A., & Toopshekan, A. (2018). Optimal planning of renewable energy resource for a residential house considering economic and reliability criteria. International Journal of Electrical Power & Energy Systems, 96, 261–273. doi: 10.1016/J.IJEPES.2017.10.017
  31. Muhammad-Sukki, F., Ramirez-Iniguez, R., Abu-Bakar, S. H., McMeekin, S. G., & Stewart, B. G. (2011). An evaluation of the installation of solar photovoltaic in residential houses in Malaysia: Past, present, and future. Energy Policy, 39(12), 7975–7987. doi: 10.1016/J.ENPOL.2011.09.052
  32. Najafi, G., & Ghobadian, B. (2011). LLK1694-wind energy resources and development in Iran. Renewable and Sustainable Energy Reviews, 15(6), 2719–2728. doi: 10.1016/J.RSER.2011.03.002
  33. Najafi, G., Ghobadian, B., Yusaf, T., & Rahimi, H. (2007). Combustion analysis of a CI engine performance using waste cooking biodiesel fuel with an artificial neural network aid. American Journal of Applied Sciences, 756–764
  34. O’Shaughnessy, E., Cruce, J., & Xu, K. (2021). Rethinking solar PV contracts in a world of increasing curtailment risk. Energy Economics, 98, 105264. doi: 10.1016/J.ENECO.2021.105264
  35. Rabab Mudakkar, S., Zaman, K., Shakir, H., Arif, M., Naseem, I., & Naz, L. (2013). Determinants of energy consumption function in SAARC countries: Balancing the odds. Renewable and Sustainable Energy Reviews, 28, 566–574. doi: 10.1016/J.RSER.2013.08.006
  36. Salehi-Isfahani, D., & Mostafavi-Dehzooei, M. H. (2018). Cash transfers and labor supply: Evidence from a large-scale program in Iran. Journal of Development Economics, 135, 349–367. doi: 10.1016/J.JDEVECO.2018.08.005
  37. Shukla, A. K., Sudhakar, K., Baredar, P., & Mamat, R. (2018). BIPV based sustainable building in South Asian countries. Solar Energy, 170, 1162–1170. doi: 10.1016/j.solener.2018.06.026
  38. Skordoulis, M., Ntanos, S., & Arabatzis, G. (2020). Socioeconomic evaluation of green energy investments: Analyzing citizens’ willingness to invest in photovoltaics in Greece. International Journal of Energy Sector Management, 14(5), 871–890. doi: 10.1108/IJESM-12-2019-0015/FULL/XML
  39. Solangi, H., Islam, M.R., Saidur, R., Rahim, N.A., Fayaz, H. (2011). A review on global solar energy policy, Renewable and Sustainable Energy Reviews. doi: 10.1016/j.rser.2011.01.007
  40. Tsantopoulos, G., Arabatzis, G., & Tampakis, S. (2014). Public attitudes towards photovoltaic developments: Case study from Greece. Energy Policy, 71, 94–106. doi: 10.1016/J.ENPOL.2014.03.025
  41. Yan, J., Luo, G., Xiao, B., Wu, H., He, Z., & Cao, Y. (2015). Origin of high fill factor in polymer solar cells from semiconducting polymer with moderate charge carrier mobility. Organic Electronics, 24, 125–130. doi: 10.1016/J.ORGEL.2015.05.034
  42. Yin, Y., Liu, T., & He, C. (2019). Day-ahead stochastic coordinated scheduling for thermal-hydro-wind-photovoltaic systems. Energy, 187, 115944. doi: 10.1016/J.ENERGY.2019.115944
  43. Zeb, R., Salar, L., Awan, U., Zaman, K., & Shahbaz, M. (2014). Causal links between renewable energy, environmental degradation and economic growth in selected SAARC countries: Progress towards green economy. Renewable Energy, 71, 123–132. doi: 10.1016/J.RENENE.2014.05.012

Last update:

  1. Flexible syngas-biogas-hydrogen fueling spark-ignition engine behaviors with optimized fuel compositions and control parameters

    Van Ga Bui, Thi Minh Tu Bui, Van Nam Tran, Zuohua Huang, Anh Tuan Hoang, Wieslaw Tarelko, Van Hung Bui, Xuan Mai Pham, Phuoc Quy Phong Nguyen. International Journal of Hydrogen Energy, 48 (18), 2023. doi: 10.1016/j.ijhydene.2022.09.133
  2. Concept of twining injector system for spark-ignition engine fueled with syngas-biogas-hydrogen operating in solar-biomass hybrid energy system

    Van Ga Bui, Thi Minh Tu Bui, Van Giao Nguyen, Van Nam Tran, Le Bich Tram Truong, Le Hoang Phu Pham. International Journal of Hydrogen Energy, 48 (18), 2023. doi: 10.1016/j.ijhydene.2022.11.076
  3. A review of performance and emissions of diesel engine operating on dual fuel mode with hydrogen as gaseous fuel

    Ram Narayan Bhagat, Kunja Bihari Sahu, Surendra Kumar Ghadai, Chandra Bhushan Kumar. International Journal of Hydrogen Energy, 48 (70), 2023. doi: 10.1016/j.ijhydene.2023.03.251
  4. A novel approach of synchronization of the sustainable grid with an intelligent local hybrid renewable energy control

    Mostafa Esmaeili Shayan, Gholamhassan Najafi, Barat Ghobadian, Shiva Gorjian, Mohamed Mazlan. International Journal of Energy and Environmental Engineering, 14 (1), 2023. doi: 10.1007/s40095-022-00503-7
  5. Building energy consumption prediction method based on Bayesian regression and thermal inertia correction

    Huiling Su, Meimei Duan, Zhong Zhuang, Yunlong Bai. International Journal of Renewable Energy Development, 13 (1), 2024. doi: 10.14710/ijred.2024.58012
  6. Parameter Extraction of Solar Photovoltaic Modules Using a Novel Bio-Inspired Swarm Intelligence Optimisation Algorithm

    Ram Ishwar Vais, Kuldeep Sahay, Tirumalasetty Chiranjeevi, Ramesh Devarapalli, Łukasz Knypiński. Sustainability, 15 (10), 2023. doi: 10.3390/su15108407
  7. Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis

    Mostafa Esmaeili Shayan, Gholamhassan Najafi, Barat Ghobadian, Shiva Gorjian, Mohamed Mazlan, Mehdi Samami, Alireza Shabanzadeh. Sustainability, 14 (6), 2022. doi: 10.3390/su14063566
  8. Techno-Economic and Environmental Feasibility Study of a Hybrid Photovoltaic Electrification System in Back-up Mode : A Case Report

    Henri Wilfried Hounkpatin, Hagninou Elagnon Venance Donnou, Victorin Kouamy Chegnimonhan, Latifath Inoussa, Basile Bruno Kounouhewa. International Journal of Renewable Energy Development, 12 (2), 2023. doi: 10.14710/ijred.2023.46372
  9. A Low-Carbon and Economic Dispatch Strategy for a Multi-Microgrid Based on a Meteorological Classification to Handle the Uncertainty of Wind Power

    Yang Liu, Xueling Li, Yamei Liu. Sensors, 23 (11), 2023. doi: 10.3390/s23115350
  10. A bibliometric and scientific mapping of the research landscape and trending topics in building integrated photovoltaic systems

    Mukul Kant Paliwal, Sanjeev Jakhar, Vikrant Sharma. Solar Energy, 267 , 2024. doi: 10.1016/j.solener.2023.112202

Last update: 2024-03-27 23:58:08

No citation recorded.