skip to main content

Ultrathin Film Amorphous Silicon Solar Cell Performance using Rigorous Coupled Wave Analysis Method

Advanced Research Laboratory for Nanomaterials & Devices, Department of Nanotechnology, Swarnandhra College of Engineering & Technology, Seetharampuram, Narsapur-534280, West Godavari (AP), India

Received: 8 Apr 2022; Revised: 11 May 2022; Accepted: 20 May 2022; Available online: 29 May 2022; Published: 4 Aug 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The issues related to global energy needs and environmental safeties as well as health crisis are some of the major challenges faced by the human, which make us to generate new pollution-free and sustainable energy sources. For that the optical functional nanostructures can be manipulated the confined light at the nanoscale level. These characteristics are emerging and leading candidate for the solar energy conversion. The combination of photonic (dielectric) and plasmonic (metallic) nanostructures are responsible for the development of better optical performance in solar cells. Here, the enhancement of light trapping within the thin active region is the primary goal. In this work, we have studied the influence of front-ITO (rectangular) and back-Ag (triangular) nanogratings were incorporated with ultrathin film amorphous silicon (a-Si) solar cell by using rigorous coupled wave analysis (RCWA) method. The improvement of light absorption, scattering (large angle), diffraction and field distributions (TE/TM) were demonstrated by the addition of single and dual nanogratings structures. Significantly, the plasmonic (noble metal) nanogratings are located at the bottom of the cell structure as a backside reflector which is helpful for the omni-directional reflection and increased the path length (life time) of the photons due to that the collection of the charge carriers were enhanced. Further, the proposed solar cell structure has optimized and compared to a back-Ag, front-ITO and dual nanogratings based ultrathin film amorphous silicon solar cell. Finally, the obtained results were evidenced for the assistance of photonic and plasmonic modes and achieved the highest current density (Jsc) of 23.82 mA/cm2(TE) and 22.75 mA/cm2 (TM) with in 50 nm thin active layers by integration of (dual) cell structures.

Fulltext View|Download
Keywords: Plasmonics; Ultrathin film; RCWA; Solar Cell; Light-trappin

Article Metrics:

  1. Agrawal M., & Peumans P., (2008). Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells. Opt. Express,16(8), 5385–5396; https://doi.org/10.1364/OE.16.005385
  2. Barman B., Chaudhary S., Verma A., &Jain V.K.,(2015). Study of formation and influence of surface plasmonic silver nanoparticles in efficiency enhancement for c-Si solar cells. AIP Conf. Proc., 1731, 050142-1-3.DOI: 10.1063/1.4947796
  3. Belhadji, Y., (2022). Numerical modelling of CuInxGa(1-x)Se2/WS2 thin solar cell with an enhanced PCE. Int. J. Renew. Energy Dev., 11(2), 393-401. https:/doi.org/10.14710/ijred.2022.38527
  4. Catchpole K.R., & Polman A., (2008). Plasmonic solar cells.Optics Express, 16(26), 21793-21800. https://doi.org/10.1364/OE.16.021793
  5. Chen, X., Jia, B., Saha, J.K., Cai, B., Stokes, N., Qiao, Q., Wang, Y., Shi, Z., &Gu, M., (2012). Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Lett., 12(5), 2187-2192. https://doi.org/10.1021/nl203463z
  6. Chriki, R., Yanai, A., Shappir, J., &Levy, U.,(2013). Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure. Opt. Express, 21 (S3), A382-A391. https://doi.org/10.1364/OE.21.00A382
  7. Gong C., & Leite M.S.,(2016). Noble metal alloys for plasmonics. ACS Photonics, 3(4), 507-513. DOI: 10.1021/acsphotonics.5b00586
  8. Hamdani, D., Prayogi, S., Cahyono, Y., Yudoyono, G., & Darminto, D., (2022). The effects of dopant concentration on the performance of the a-SiOx:H(p)/a-Si:H(i1)/a-Si:H(n) heterojunction solar cell. Int. J. Renew. Energy Dev.,11(1), 173-181. https://doi.org/10.14710/ijred.2022.40193
  9. Homola J., Yee S.S., &Gauglitz G., (1999). Surface plasmon resonance sensors: Review.Sens. Actuator B.,54, 3-15. https://doi.org/10.1016/S0925-4005(98)00321-9
  10. Isabella,O., Vismara, R., Linssen, D.N.P., Wang, K.X., Fan,S.,& Zeman, M. (2018). Advanced light trapping scheme in decoupled front and rear textured thin-film silicon solar cells. Sol. Energy, 162(5), 344. https://doi.org/10.1016/j.solener.2018.01.040
  11. Joseph, D., Senthilarasu S., &Mallick T.K., (2019). Improving spectral modification for applications in solar cells: A review. Renewable Energy, 132, 186-205. https://doi.org/10.1016/j.renene.2018.07.101
  12. Khai Q.L., Abass A., Maes B., Bienstman P., &Alu A. (2011). Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells.Opt. Express, A39-A50; https://doi.org/10.1364/OE.20.000A39
  13. Meng X., Drouard E., Gomard G., Peretti R., Fave A., &SeassalC.,(2012). Combined front and back diffraction gratings for broad band light trapping in thin film solar cell. Opt. Express, A560-571. https://doi.org/10.1364/OE.20.00A560
  14. Phengdaam A., Nootchanat S., Ishikawa R., Lertvachirapaiboon C., Kato K., Sanong E., &Baba A.,(2021). Improvement of organic solar cell performance by multiple plasmonic excitations using mixed-silver nanoprisms. Journal of Science: Advanced Materials and Devices, 6, 264-270. https://doi.org/10.1016/j.jsamd.2021.02.007
  15. Pillai S., &Green M.A. (2010). Plasmonics for photovoltaic applications.Sol. Energy Mater. Sol. Cells, 94 (9), 1481-1486. https://doi.org/10.1016/j.solmat.2010.02.046
  16. Prabhakar, R. (2019). Plasmonic noble metal@metal oxide core-shell nanoparticles for dye-sensitized solar cell applications. Sustainable Energy Fuels, 3, 63-91.DOI: 10.1039/C8SE00336J
  17. Dubey, R.S. & Sigamani, S.,(2014). Performance evaluation of thin film silicon solar cell based on dual diffraction grating. Nanoscale Res. Lett., 9, 688. https://doi.org/10.1186/1556-276X-9-688
  18. Saadmim F., Forhad T., Sikder A., Ghann W., Ali M.M., Sitther V., Saleh Ahammad A.J., Abdus Subhan Md., &Uddin J. (2020). Enhancing the performance of dye sensitized solar cells using silver nanoparticles modified photoanode. Molecules, 25, 4021-1-10. doi: 10.3390/molecules25174021
  19. Saravanan S., &Dubey R.S.,(2015). Design and analysis of thin film silicon solar cells using FDTD method, Procedia Materials Science, 10, 301-306. https://doi.org/10.1016/j.mspro.2015.06.054
  20. Saravanan, S., & Dubey, R.S., (2021). Study of ultrathin-film amorphous silicon solar cell performance using photonic and plasmonic nanostructure. Int. J. Energy Res.. 46(3), 2558-2566. https://doi.org/10.1002/er.7328
  21. Saravanan, S., & Dubey, R.S., (2016). Optical absorption in 40 nm ultrathin film silicon solar cells assisted by photonic and plasmonic modes. Opt. Commun., 377, 65-69. https://doi.org/10.1016/j.optcom.2016.05.028
  22. Schuller, J.A., Barnard, E.S., Cai, W., Jun, Y.C., White, J.S., &Brongersma, M.L.,(2010). Plasmonics for extreme light concentration and manipulation. Nature Materials, 9, 193-204. https://doi.org/10.1038/nmat2630
  23. Sha, W.E.I., Choy W.C.H., &Chew W.C., (2010). A comprehensive study for the plasmonic thin-film solar cell with periodic structure.Opt. Express, 18 (6), 5993-6007. https://doi.org/10.1364/OE.18.005993
  24. Shi Y., Wang X., Liu W., Yang T., Xu R., Yang F. (2013). Multilayer silver nanoparticles for light trapping in thin film solar cells. J. Appl. Phys, 113, 176101-1-4. https://doi.org/10.1063/1.4803676
  25. Singh, G., &Verma S.S. (2017). Enhanced efficiency of thin film GaAs solar cells with plasmonic metal nanoparticles. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-9. https://doi.org/10.1080/15567036.2017.1407840
  26. Tran V.T., Nguyen H.Q., Kim Y.M., Ok G., &Lee J. (2020). Photonic-plasmonic nanostructures for solar energy utilization and emerging biosensors. Nanomaterials. 10, 2248-1-19. https://doi.org/10.3390/nano10112248
  27. Vismara R., Lank N.O., Verre R., Kall M., Isabella O.,&Zeman M. (2019). Solar harvesting based on perfect absorbing all-dielectric nanoresonators on a mirror.Opt. Express, 27 (16), A967-A980. https://doi.org/10.1364/OE.27.00A967
  28. Xia, Z., Wu Y., Liu R., Tang P., &Liang Z., (2013). Light trapping enhancement with combined front metal nanoparticles and back diffraction gratings.Chinese Optics Letters, 11, S10503-1-4. DOI: 10.3788/COL201311.S10503
  29. Zia, R., Selker M.D., Catrysse P.B., &Brongersma M.L., (2004).Geometries and materials for subwavelength surface plasmon modes.J. Opt. Soc. Am. A, 21, 2442-2446.DOI: 10.1364/JOSAA.21.002442

Last update:

  1. Gaussian grating for enhancing light absorption by amorphous silicon thin-film solar cells

    Mohammad Eskandari. Photonics and Nanostructures - Fundamentals and Applications, 59 , 2024. doi: 10.1016/j.photonics.2024.101247

Last update: 2024-11-13 19:56:27

No citation recorded.