skip to main content

Prototype of a Solar Collector with the Recirculation of Nanofluids for a Convective Dryer

Postgraduate Studies and Research Division, Tecnológico Nacional de México Campus Tlajomulco, Km. 10 Carretera Tlajomulco-San Miguel, Tlajomulco de Zúñiga, C.P. 45640, Jalisco, Mexico

Received: 17 Jan 2022; Revised: 18 Jun 2022; Accepted: 20 Jul 2022; Available online: 18 Aug 2022; Published: 1 Nov 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Solar collectors are thermal devices that can trap solar energy and convert it to heat. This heat can be used for different industrial applications, for example, the drying of food is one of the most useful applications of solar collectors. This work aims to design and build a solar collector using nanofluids for the convective drying of food. The dimensions of the solar collector were 1 m2 by 20 cm with an angle of inclination of 45°. The collector was composed of 9-mm thick tempered glass and a heat exchanger in which the nanofluids circulate. Nanofluids were designed based on canola oil and nanopowders (>50 nm) of Al2O3, CuO, and a 1:1 (w/w) mixture of both. Thermal profiles were determined using differential scanning calorimetry (DSC). The solar collector temperatures were recorded using an Agricos® unit. The maximum temperatures of the air leaving the collector were 39.1°C, 44°C, 54°C, and 47.1°C for canola oil, and the nanofluids composed of Al2O3, CuO, and the 1:1 mixture, respectively, with a maximum efficiency of 65.09%. An increase in the outlet air temperature was observed using the nanofluids compared to canola oil alone
Fulltext View|Download
Keywords: Solar collector; Nanofluids; Solar radiation; Convective drying

Article Metrics:

  1. Aykın-Dinçer, E., Erbaş¸ M. (2019). Cold dryer as novel process for producing a minimally processed and dried meat. Innovative Food Science & Emerging Technologys 57, 102113. https://doi.org/10.1016/j.ifset.2019.01.006
  2. Amrollahi, A., Rashidi, A.M., Lotfi, R., Meibodi, M.E. & Kashefi, K. (2010). Convection heat transfer of functionalized MWNT in aqueous fluids in laminar and turbulent flow at the entrance region. International Communications in Heat and Mass Transfer 37, 717-723. https://doi.org/10.1016/j.icheatmasstransfer.2010.03.003
  3. Bahiraei, M. & Hangi, M. (2016). Investigating the Effect of Line Dipole Magnetic Field on Hydrothermal Characteristics of a Temperature-Sensitive Magnetic Nanofluid Using Two-Phase Simulation. Nanoscale Research Letters 11, 443. https://doi.org/10.1186/s11671-016-1661-9
  4. Başlar, M., Kilicli, M., Yalinkilic, B. (2015). Dehydration kinetics of salmon and trout fillets using ultrasonic vacuum drying as a novel technique. Ultrasonics Sonochemistry 27, 495–502. https://doi.org/10.1016/j.ultsonch.2015.06.018
  5. Bangura, A.B.M., Hantoro, R., Fudhloli, A., Uwitije, P.D. (2022) Mathematical Model of the Thermal Performance of Double-pass Solar Collector for Solar Energy Application in Sierra Leone. Int. J. Renew. Energy Dev, 11(2), 347-355 https://doi.org/10.14710/ijred.2022.41349
  6. Besheer A.H., Smyth, M., Zacharopoulos, A., Mondol, J. & Pugsley, A. (2016). Review on recent approaches for hybrid PV/T solar technology. International Journal of Energy Research 40(15), 2038-2053. https://doi.org/10.1155/2012/307287
  7. Bourriot, S., Garnier, C. & Doublier, J.L. (1999). Phase separation, rheology and microstructure of micellar casein-guar gum mixtures. Food Hydrocolloids 7, 90-95. https://doi.org/10.1016/S0268-005X(98)00068-X
  8. Castillo-Téllez, M., Pilatowsky-Figueroa, I., López-Vidaña, E.C., Sarracino-Martínez, O. & Hernández, G. (2016). Dehydration of the red chilli (Capsicum annuum L., costeño) using an indirect-type forced convection solar dryer. Applied Thermal Engineering, 114(5), 1137-1147. https://doi.org/10.1016/j.applthermaleng.2016.08.114
  9. Choi, S.U.S, Zhang, Z.G., Yu. W., Lockwood. F.E., Grulke. E.A. (2001). Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 79(14), 2252–4. https://doi.org/10.1063/1.1408272
  10. Choudhary, S., Sachdeva, A., & Kumar P. (2021): Time-based assessment of thermal performance of flat plate solar collector using magnesium oxide nanofluid. International Journal of Sustainable Energy, 40(5), 460-476. https://doi.org/10.1080/14786451.2020.1814288
  11. Demou, D. & Grigoriadis, D.G.E. (2018). 1D model for the energy yield calculation of natural convection solar air collectors, Renewable Energy, 119, 649–661. https://doi.org/10.1016/j.renene.2017.12.030
  12. Diez, F.J., Navas-Gracia, L.M., Martínez-Rodríguez, A., Correa-Guimaraes, A. & Chico- Santamarta, L. (2019). Modelling of a flat-plate solar collector using artificial neural networks for different working fluid (water) flow rates. Solar Energy 188, 1320-1331. https://doi.org/10.1080/01430750.2018.1525576
  13. Eltaweel, M., Ahmed A. Abdel-Rehim & Hussien, H. (2019). Indirect thermosiphon flat-plate solar collector performance based on twisted tube design heat exchanger filled with nanofluid. Energy Research 44(6), 4269-4278. https://doi.org/10.1002/er.5146
  14. Farias-Cervantes, V., Delgado-Licon, E., Solís-Soto, A., Medrano-Roldan, H. & Andrade-González, I. 2016. Effect of Spray Drying Temperature and Agave Fructans Concentration as Carrier Agent on the Quality Properties of Blackberry Powder. International Journal of Food Engineering 5(12), 451–459. https://doi.org/10.1515/ijfe-2015-0287
  15. Feizabadi, A., Khoshvaght-Aliabadi, M. & Rahimi, A.B. (2018). Numerical investigation on Al2O3/water nanofluid flow through twisted serpentine tube with empirical validation. Applied Thermal Engineering 137, 296-309. https://doi.org/10.1016/j.applthermaleng.2018.03.076
  16. Figueroa-Garcia, E. Segura-Castruita, M.A., Luna-Olea, F.M., Vázquez-Vuelvas, O.F. & Chávez-Rodríguez, A.M. (2021). Design of a hybrid solar collector with a flat plate solar collector and induction heating: evaluation and modelling with principal components regression. Revista Mexicana de Ingeniería Química 20(3), 1-14. https://doi.org/10.24275/rmiq/Alim2452
  17. Gorji, T.B. & Ranjbar, A. (2017). Thermal and exergy optimization of a nanofluid-based direct absorption solar collector. Renew Energy 106, 274-287. https://doi.org/10.1016/j.renene.2017.01.031
  18. Hajar, E., Rachid, T. & Najib, B.M. (2017). Conception of a solar air collector for an indirect solar dryer. Pear drying test, Energy Procedia 141, 29-33. https://doi.org/10.1016/j.egypro.2017.11.114
  19. Kasaeian. A.B., Sokhansefat, T., Abbaspour, M.J., Sokhansefat, M. (2012) Numerical study of heat transfer enhancementby using Al2O3/synthetic oil nanofluid in aparabolic trough collector tube. Rome: World Academy of Science, Engineering and Technology, 1154–9
  20. Khoshvaght-Aliabadi, M. & Arani-Lahtari, Z. (2016). Forced convection in twisted minichannel (TMC) with different cross section shapes: a numerical study. Applied Thermal Engineering 93, 101-112. http://dx.doi.org/10.1016/j.applthermaleng.2015.09.010
  21. Khullar, V., Tyagi, H., Phelan PE, Otanicar, T.P., Singh, H. & Taylor, R.A. (2012). Solar energy harvesting using Nanofluids-based concentrating solar collector. Journal of Nanotechnology in Engineering and Medicine 3 (3), 031003 (9). https://doi.org/10.1115/1.4007387
  22. Kiliç, A. (2017). LTHV (Low Temperature and High Velocity) drying characteristics and mathematical modeling of anchovy (Engraulis encrasicolus). GIDA 42(6), 654–665. https://doi. 10.15237/gida.GD17043
  23. Lee, J., Mudawar, I. (2007). Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels. International Journal of Heat and Mass Transfer 50(3), 452-463. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.001
  24. Li, N., Taylor, L.S., & Mauer, L.J. (2011). Degradation kinetics of catechins in green tea powder: Effects of temperature and relative humidity. Journal of Agriculture and Food Chemistry, 59, 6082–6090. https://doi.org/10.1021/jf200203n
  25. López-Vidaña, E. C., Cesar-Munguía, A. L., García-Valladares, O., Pilatowsky, I., and Brito-Orosco, R. (2020). Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renewable Energy 147, 845-855. https://doi.org/10.1016/j.renene.2019.09.018
  26. Machrafi, H., Lebon, G. & Iorio, C.S. (2016). Effect of volume-fraction dependent agglomeration of nanoparticles on the thermal conductivity of nanocomposites: applications to epoxy resins, filled by SiO2, AlN and MgO nanoparticles. Composites Science and Technology 130, 78-87. https://doi.org/10.1016/j.compscitech.2016.05.003
  27. Majdi, J.E. (2018). Optimization of convective drying by response sufance methodoly Computers and Electtronics in Agriculture 156, 574-584, https://doi.org/10.1016/j.compag.2018.12.021
  28. Martins, M.G., Martins, D.E.G., Pena, R.D.S. (2015). Drying kinetics and hygroscopic behavior of pirarucu (Arapaima gigas) fillet with different salt contents. LWT – Food Science Technology 62(1), 144–151. https://doi.org/10.1016/j.lwt.2015.01.010
  29. Mekahlia, A., Boumaraf, L. & Abid, Ch. (2020). CFD analysis of the thermal losses on the upper part of a flat solar collector. Heat Transfer 11(2), 99-112. https://doi.org/10.29019/enfoque.v11n2.601
  30. Mohandes, N., Sanfilippo, A. & Al Fakhri, M. (2019). Modeling residential adoption of solar energy in the Arabian Gulf Region. Renewable Energy 131, 381-389. https://doi.org/10.1016/j.renene.2018.07.048
  31. Omolola, A.O., Jideani, A.I.O. and Kapila, P.F. 2015. Drying Kinetics of Banana (Musa Spp.). Interciencia, 40, 374-380. https://www.interciencia.net/wp
  32. Parreño, J., Lara, O., Jumbo, R., Caicedo, H. & Sarzosa, D. (2020). Diseño de un módulo de energía solar como estrategia de ahorro energético y disminución de la emisión de CO2. Agroindustria, Sociedad y Ambiente 2(15), 4-18. https://revistas.uclave.org/index.php/asa/article/view/2849
  33. Paul, G., Chopkar, M., Manna, I. & Das, P.K. (2010). Techniques for measuring the thermal conductivity of nanofluids: a review. Renewable and Sustainable Energy Reviews 14, 1913-1924. https://doi.org/10.1016/j.rser.2010.03.017
  34. Raj, P. & Subudhi, S. (2018). A review of studies using nanofluids in flat plates and direct solar absorption. Renewable and Sustainable Energy Reviews 84, 54-74. https://doi.org/10.1016/j.rser.2017.10.012
  35. Sadeghzadeh, M., Ahmadi, M.H., Kahani, M., Sakhaeinia, H., Chaji, H., Chen, L. (2019). Smart modeling by using artificial intelligent techniques on thermal performance of flat‐plate solar collector using nanofluid. Energy Science & Engeniering 7(5), 1649-1658. https://doi.org/10.1002/ese3.381
  36. Sandhua, H., Gangacharyulua, D. & Agrawal, V.P. (2016). Coding, evaluation, comparison, ranking and optimal selection of nanoparticles with heat transfer fluids for thermal systems. Particulate Science and Technology 36(1), 50-60. https://doi.org/10.1080/02726351.2016.1208695
  37. Seerangurayar, T., Al-Ismaili, A. M., Janitha Jeewantha, L. H., Al-Nabhani, A. 2019. Experimental investigation of shrinkage and microstructural properties of date fruits at three solar drying methods. Solar Energy 180, 445-455. January. https://doi.org/10.1016/j.solener.2019.01.047
  38. Senthil, R., Priya, I.I.M., Gupta, M., Rath, C., Ghosh, N. (2021) Experimental Study on Solar Heat Battery using Phase Change Materials for Parabolic Dish Collector. International Journal of Renewable Energy Development, 10(4), 819-825. https://doi.org/10.14710/ijred.2021.38376
  39. Shirole A, Wagh, M, Kulkarni V. (2021) Thermal Performance Comparison of Parabolic Trough Collector (PTC) Using Various Nanofluids. International Journal of Renewable Energy Development, 10(4), 875-889 https://doi.org/10.14710/ijred.2021.33801
  40. Sun, B., Yang, A. & Yang, D. (2017). Experimental study on the heat transfer and flow characteristics of nanofluids in the built-in twisted belt external thread tubes. International Journal of Heat and Mass Transfer 107, 712-722. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.084
  41. Tabtiang, S., Prachayawarakon, S. & Soponronnarit, S. (2012) Effects of Osmotic Treatment and Superheated Steam Puffing Temperature on Drying Characteristics and Texture Properties of Banana Slices. Drying Technology: An International Journal 30(1), 20-28. http://dx.doi.org/10.1080/07373937.2011.613554
  42. Vajjha, R. S., and D. K. Das. 2012. A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power. International Journal of Heat and Mass Transfer 55, 4063–78. https://doi: 10.1016/j.ijheatmasstransfer.2012.03.048
  43. Vega, a. P., Fito, a. Andrés, Lemus, R. 2007. Mathematical modeling of hot-air drying kinetics of red bell pepper (var. Lamuyo). Journal of Food Engineering 79(4), 1460-1466. https://doi.org/10.1016/j.jfoodeng.2006.04.028
  44. Waliszewski, K., Cortes, H.D., Pardio, V.T., García, M.A. (1999). Color parameter changes in banana slices during osmotic dehydration. Drying Technology: An International Journal 17(4-5), 955-960. http://dx.doi.org/10.1080/07373939908917583
  45. Yagcioglu, A., Degirmencioglu, A. and Cagatay, F. 1999. Drying Characteristics of Laurel Leaves under Different Conditions. Proceedings of the 7th International Congress on Agricultural Mechanization and Energy, Adana, 26-27 May 1999, 565-569
  46. Yaldiz, O. and Ertekin, C. 2001. Thin Layer Solar Drying of Some Vegetables. Drying Technology 19, 583-597. https://doi.org/10.1081/DRT-100103936

Last update:

  1. Recent advancements in indirect solar dryer performance and the associated thermal energy storage.

    Gadisa Desa Shekata, Getachew Shunki Tibba, Aklilu Tesfamichael Baheta. Results in Engineering, 2024. doi: 10.1016/j.rineng.2024.102877

Last update: 2024-09-16 08:24:10

No citation recorded.