skip to main content

Experimental Study of Rice Husk Fluidization Without a Sand Bed Material on a Bubbling Fluidized Bed Gasifier

1Department of Mechanical Engineering, Faculty of Engineering, University of Indonesia, Depok, Indonesia

2Department of Mechanical Engineering, Faculty of Industrial Technology, University of Jayabaya,, Jakarta, Indonesia

Received: 30 Apr 2022; Revised: 18 Jul 2022; Accepted: 25 Aug 2022; Available online: 24 Sep 2022; Published: 1 Jan 2023.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
This study aimed to determine the effect of rice husk fluidization and variation in the equivalence ratio of bubbling fluidized bed gasifiers without sand bed materials. It also aimed to improve the fluidization quality by reducing the diameter of rice husks. Therefore, the bulk density increases, whereas voidage decreases, both of which are the main parameters for improving the quality of fluidization in solid particles. Experiments were carried out at a velocity of 0.82 m/s, by varying the equivalent ratios ranging from 0.20 to 0.35, and analyzing the syngas composition, cold gas and carbon conversion efficiencies, lower heating value, and temperature distribution. An equivalence ratio of 0.30 was obtained for a bubbling fluidized gasifier with syngas compositions of 7.415%, 15.674%, 3.071%, 17.839%, and 56.031% for H2, CO, CH4, CO2, and N2, respectively. Under these conditions, we obtained cold gas and carbon conversion efficiencies and a lower heating value of 31.340%, 37.120%, and 3.881 MJ/Nm3, respectively.
Fulltext View|Download
Keywords: bubbling fluidized bed gasifier; rice husk; equivalence ratio; syngas

Article Metrics:

  1. Abdullah, M. Z., Husain, Z., & Yin Pong, S. L. (2003). Analysis of cold flow fluidization test results for various biomass fuels. Biomass and Bioenergy, 24(6), 487–494. https://doi.org/10.1016/S0961-9534(02)00150-2
  2. Al-rahbi, A. S., & Williams, P. T. (2017). Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char. Applied Energy, 190, 501–509. https://doi.org/10.1016/j.apenergy.2016.12.099
  3. Armesto, L., Bahillo, A., Veijonen, K., Cabanillas, A., & Otero, J. (2002). Combustion behaviour of rice husk in a bubbling fluidised bed. Biomass and Bioenergy, 23(3), 171–179. https://doi.org/10.1016/S0961-9534(02)00046-6
  4. Asosiasi Produsen Biofuel Indonesia (APROBI). (2021). BULETIN BIOENERGI / Edisi Mei 2021 1. Asosiasi Produsen Biofuel Indonesia (APROBI), 1–16
  5. Badan Pusat Statistik. (2021). Luas Panen dan Produksi Padi di Indonesia 2020
  6. Bartels, M., Lin, W., Nijenhuis, J., Kapteijn, F., & van Ommen, J. R. (2008). Agglomeration in fluidized beds at high temperatures: Mechanisms, detection and prevention. Progress in Energy and Combustion Science, 34(5), 633–666. https://doi.org/10.1016/j.pecs.2008.04.002
  7. Basu, P. (2006). Combustion and Gasification in Fluidized Beds. Combustion and Gasification in Fluidized Beds. https://doi.org/10.1201/9781420005158
  8. Behainne, J. J. R., & Martinez, J. D. (2014). Performance analysis of an air-blown pilot fluidized bed gasifier for rice husk. Energy for Sustainable Development, 18(1), 75–82. https://doi.org/10.1016/j.esd.2013.11.008
  9. Campoy, M., Gómez-Barea, A., Vidal, F. B., & Ollero, P. (2009). Air-steam gasification of biomass in a fluidised bed: Process optimisation by enriched air. Fuel Processing Technology, 90(5), 677–685. https://doi.org/10.1016/j.fuproc.2008.12.007
  10. Champagne, E. T. (2004). Rice: Chemistry and Technology. 3rd Edition. (E. T. Champagne (ed.)). American Association of Cereal Chemists
  11. Chyuan, H., Chen, W., Farooq, A., Yang, Y., & Teong, K. (2019). Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review. Renewable and Sustainable Energy Reviews, 113(August 2018), 109266. https://doi.org/10.1016/j.rser.2019.109266
  12. Cocco, R., Karri, S. B. R., & Knowlton, T. (2014). Chemical Engineering Progress: Introduction to fluidization. American Institute of Chemical Engineers (AICHE), 110(11), 21–29
  13. Daizo Kunii. (1991). Fluidization Engineering. In Butterworth—Heinemann Boston (Second Ed.). Butterworth—Heinemann Boston
  14. Firman, A., Herwi, S., Waluyo, J., & Setyawan, A. (2020). Thermodynamic Study of Palm Kernel Shell Gasification for Aggregate Heating in An Asphalt Mixing Plant. Int. Journal of Renewable Energy Development, 9(2), 311–317. https://doi.org/10.14710/ijred.9.2.311-317
  15. Geldart, D. (1973). Types of Gas Fhidization. Powder Technology, 7, 285–292
  16. Gómez-Barea, A., Arjona, R., & Ollero, P. (2005). Pilot-plant gasification of olive stone: A technical assessment. Energy and Fuels, 19(2), 598–605. https://doi.org/10.1021/ef0498418
  17. Leon, M. A., & Dutta, A. (2010). Fluidization characteristics of rice husk in a bubbling fluidized bed. Canadian Journal of Chemical Engineering, 88(1), 18–22. https://doi.org/10.1002/cjce.20245
  18. Lv, P. M., Xiong, Z. H., Chang, J., Wu, C. Z., Chen, Y., & Zhu, J. X. (2004). An experimental study on biomass air-steam gasification in a fluidized bed. Bioresource Technology, 95(1), 95–101. https://doi.org/10.1016/j.biortech.2004.02.003
  19. Makwana, J. P., Joshi, A. K., Athawale, G., Singh, D., & Mohanty, P. (2015). Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal. Bioresource Technology, 178, 45–52. https://doi.org/10.1016/j.biortech.2014.09.111
  20. Mansaray et al. (2007). Physical and Thermochemical Properties of Rice Husk. Energy Sources, 19:9(May), 989–1004. https://doi.org/10.1080/00908319708908904
  21. Mansaray, K. G., Ghaly, A. E., Al-Taweel, A. M., Hamdullahpur, F., & Ugursal, V. I. (1999). Air gasification of rice husk in a dual distributor type fluidized bed gasifier. Biomass and Bioenergy, 17(4), 315–332. https://doi.org/10.1016/S0961-9534(99)00046-X
  22. Motta, I. L., Miranda, N. T., Maciel Filho, R., & Wolf Maciel, M. R. (2018). Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects. Renewable and Sustainable Energy Reviews, 94(June 2017), 998–1023. https://doi.org/10.1016/j.rser.2018.06.042
  23. Nam, S. B., Park, Y. S., Kim, D. J., & Gu, J. H. (2016). Torrefaction Reaction Characteristic of Various Biomass Waste on Pilot Scale of Torrefaction Reaction System. Procedia Environmental Sciences, 35, 890–894. https://doi.org/10.1016/j.proenv.2016.07.044
  24. Narváez, I., Orío, A., Aznar, M. P., & Corella, J. (1996). Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas. Industrial and Engineering Chemistry Research, 35(7), 2110–2120. https://doi.org/10.1021/ie9507540
  25. Natarajan, E., Nordin, A., & Rao, A. N. (1998). Overview of combustion and gasification of rice husk in fluidized bed reactors. Biomass and Bioenergy, 14(5–6), 533–546. https://doi.org/10.1016/S0961-9534(97)10060-5
  26. Panaka et al. (1993). Operating Experiences with Biomass Gasifiers in Indonesia. In: Bridgwater, A.V. (eds). Advances in Thermochemical Biomass Conversion. Springer, Dordrecht., 392–402. https://doi.org/10.1007/978-94-011-1336-6_30
  27. Pode, R. (2016). Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews, 53, 1468–1485. https://doi.org/10.1016/j.rser.2015.09.051
  28. Saidi, M., Hossein, M., Ali, G., & Ramezani, T. (2020). Hydrogen production from waste gasification followed by membrane filtration: a review. Environmental Chemistry Letters, 18(5), 1529–1556. https://doi.org/10.1007/s10311-020-01030-9
  29. Seo, M. W. (2021). Gasification operational characteristics of 20-tons-Per-Day rice husk fluidized-bed reactor. Renewable Energy, 169, 788–798. https://doi.org/10.1016/j.renene.2021.01.045
  30. Siedlecki, M., Jong, W. De, & Verkooijen, A. H. M. (2011). Fluidized Bed Gasification as a Mature And Reliable Technology for the Production of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels---A Review. Energies, 4, 389–434. https://doi.org/10.3390/en4030389
  31. Sivabalan, K., Hassan, S., Ya, H., & Pasupuleti, J. (2021). A review on the characteristic of biomass and classification of bioenergy through direct combustion and gasification as an alternative power supply. Journal of Physics: Conference Series, 1831(1). https://doi.org/10.1088/1742-6596/1831/1/012033
  32. U. Arena. (2013). Fluidized bed gasification, in: F. Scala (Ed.), Chap. 17 in Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification. ISBN 978-0-85709-541-1. pp. 765-812. In Woodhead Publishing Limited. https://doi.org/10.1533/9780857098801.3.765
  33. Yahya, H. (2017). Kajian Beberapa Manfaat Sekam Padi di Bidang Teknologi Lingkungan: Sebagai Upaya Pemanfaatan Limbah Pertanian Bagi Masyarakat Aceh Di Masa Akan Datang. Prosiding Seminar Nasional Biotik. Maret 2017, 266–270
  34. Yang, Y., Liew, R. K., Muthaliar, A., Shin, T., Foong, Y., Nai, P., & Yek, Y. (2021). Gasification of refuse ‑ derived fuel from municipal solid waste for energy production: a review. Environmental Chemistry Letters, 19(3), 2127–2140. https://doi.org/10.1007/s10311-020-01177-5
  35. Ying, S., Herng, Y., Yan, W., Haziqah, N., Nilam, T., Tengku, B., Sonne, C., Peng, W., Show, P., & Lam, S. (2021). Technology Progress in waste valorization using advanced pyrolysis techniques for hydrogen and gaseous fuel production. Bioresource Technology, 320, 124299. https://doi.org/10.1016/j.biortech.2020.124299
  36. Zhang, Y., Zhao, Y., Gao, X., Li, B., & Huang, J. (2015). Energy and exergy analyses of syngas produced from rice husk gasification in an entrained flow reactor. Journal of Cleaner Production, 95, 273–280. https://doi.org/10.1016/j.jclepro.2015.02.053

Last update:

No citation recorded.

Last update:

No citation recorded.