skip to main content

The Conductivity Enhancement of 1.5Li2O-P2O5 Solid Electrolytes by Montmorillonite Addition

1Department of Metallurgy and Materials Engineering, University of Indonesia, UI Depok Campus, West Java 16424, Indonesia

2National Research and Innovation Agency (BRIN), Puspiptek National Science Technopark, South Tangerang, Banten 15314, Indonesia

Received: 5 Jul 2022; Revised: 15 Nov 2022; Accepted: 4 Dec 2022; Available online: 18 Dec 2022; Published: 1 Jan 2023.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Most solid electrolyte materials have not shown enough conductivity to be used as an electrolyte for a battery in electronic devices. The mixture of 1.5 Li2O and P2O5 has been reported to show a good conductivity higher than that of Li3PO4, which is thought to be due to phase mixtures that are formed during manufacturing process. Montmorillonite (MMT) was used to explore the effect of phase mixture on conductivity of new 1.5Li2O-P2O5-MMT solid electrolyte composite, which was prepared through conventional solid-state reaction procedures. This study was conducted, how the addition of MMT affects process of forming 1.5Li2O-P2O5-MMT compound, and whether it influences electrical properties and permittivity of compound. Morphology, hygroscopicity, and electrochemical characteristics of this material were analyzed in this study. The shape of glassy-like flakes was reduced in micrographs, and granular lumps were getting larger as MMT was added. Addition also tended to reduce hygroscopicity, as indicated by a reduced rate of porous absorption. Whole Nyquist plot consisted of only one imperfect semicircular arc, indicating only one relaxation process occurred in materials. Capacitance of all arcs indicated main contribution of response was from bulk material. Slope of dielectric loss of samples indicated that conduction in the samples was mainly dominated by dc conduction. MMT clays acted as a medium that absorbed liquid phase in solid-state reaction, increasing formation of dominant phase, which determined total conductivity of compound. Conductivity was higher than that of Li4P2O7, where the sample of 20 wt% MMT addition was most polarizable and most dielectric compound.

Fulltext View|Download
Keywords: Lithium Phosphate; Li2O-P2O5; solid electrolyte; Montmorillonite; conductivity; Electrochemical Impedance Spectroscopy
Funding: University of Indonesia; National Research and Inovation Agency

Article Metrics:

  1. Ayu, N. I. P., Kartini, E., Prayogi, L. D., Faisal, M., Supardi. (2016). Crystal structure analysis of Li3PO4 powder prepared by wet chemical reaction and solid-state reaction by using X-ray diffraction (XRD). Ionics, 22(7), 1051-1057. https://doi.org/10.1007/s11581-016-1643-z
  2. Das, S. S., Singh, N. P., Srivastava, V., and Srivastava, P. K. (2008). Synthesis, electrical conduction and structure–property correla-tion in (50−x)Ag2O–50P2O5–xCoCl2 glassy systems. Solid State Ion, 179(40), 2325–2329. https://doi.org/10.1016/j.ssi.2008.09.018
  3. Deka, M. and Kumar, A. (2011). Electrical and electrochemical studies of poly (vinylidene fluoride)–clay nanocomposite gel polymer electrolytes for Li-ion batteries. Journal Power Sources, 196(3), 1358–1364. https://doi.org/10.1016/j.jpowsour.2010.09.035
  4. Dhahri, A., Dhahri, E., & Hlil, E. K. (2018). Electrical conductivity and dielectric behaviour of nanocrystalline La0.6Gd0.1Sr0.3Mn0.75Si0.25O3. Royal Society of Chemistry Advances, 8(17), 9103–9111. https://doi.org/10.1039/c8ra-00037a
  5. Fang, S., Bresser, D., & Passerini, S. (2019). Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium‐ and Sodium‐Ion Batteries. Advanced Energy Materials, 1902485. https://doi.org/10.1002/aenm.201902485
  6. Guo, Y., Wu, S., He, Y., Kang, F., Chen, L., Li, H., Yang, Q. (2022). Solid-state lithium batteries: Safety and prospects, eScience, 2(2),138-163, https://doi.org/10.1016/j.esci.2022.02.008
  7. Hartmann, P., Rosenberg, M., Juhasz, Z., Matthews, L. S., Sanford, D. L., Vermillion, K., Carmona-Reyes, J., and Hyde, T. W. Ionization Waves In The Pk-4 Direct Current Neon Discharge. (2020). Plasma Sources Science and Technology. 29. 115014. https://doi.org/10.1088/1361-6595/abb955
  8. Hou, Q., Buckeridge, J., Lazauskas, T., Mora-Fonz, D., Sokol, A. A., Woodley, S. M., & Catlow, R. C. A. (2018). Defect formation in In2O3 and SnO2: a new atomistic approach based on accurate lattice energies. Journal of Materials Chemistry C. 6, 12386-12395. https://doi.org/10.1039/c8tc04760j
  9. Jayswal, M. S., Kanchan, D. K., Sharma, P., and Gondaliya, N. (2013). Relaxation process in PbI2–Ag2O–V2O5–B2O3 system: Dielectric, AC conductivity and modulus studies. Materials Science and Engineering: B, 178(11), 775–784
  10. https://doi.org/10.1016/j.mseb.2013.03.013
  11. Jodi H., Supardi, Kartini, E., and Zulfia, A. (2016). Synthesis and Electrochemical Characterization of Li3PO4 for Solid State Electrolytes. Jurnal Sains Materi Indonesia, 18(1), 1–8. https://doi.org/10.17146/jsmi.2016.18.1.4181
  12. Jodi H., Zulfia, A., Deswita, and Kartini, E. (2016). A Study of the Structural and Electrochemical Properties of Li3PO4-MMT-PVDF Composites for Solid Electrolytes. International Journal of Technology, 7(8), 1291–1300. https://doi.org/10.14716/ijtech. v7i8.6894
  13. Jodi, H., Syahrial, A. Z., Sudaryanto, and Kartini, E. (2017). Synthesis and electrochemical charac-terization of new Li2O-P2O5 compounds for solid electrolytes. International Journal of Technology, 8(8). https://doi.org/10.14716/ijtech. v8i8.681
  14. Jodi, H., Syahrial, A.Z., Sudaryanto, S., Kartini, E.., (2017). Synthesis and Electrochemical Characterization of New Li2O-P2O5 Compounds for Solid Electrolytes. Interna-tional Journal of Technology. 8(8),1516-1524. https://doi.org/10.14716/ijtech.v8i8.681
  15. Jodi, H., Yulianti, E., Sudjatno, A., Syahrial, A. Z., and Kartini, E. (2021). Blending Effect in Li2O-P2O5-MMT Solid Electrolyte and Its Contribution to Conductivity Value. AIP Conference Proceedings 2381, 020025. https://doi.org/10.1063/ 5.0066611
  16. Kartini, E., Honggowiranto, W., Supardi, Jodi, H., and Jahya, A. K., Wahyudianingsih (2014). Synthesis and Characterization of New Solid Electrolyte Layer (Li2O)x(P2O5)y. 14th Asian Conference on Solid State Ionics, 2, 163–173. https://doi.org/10.3850/978-981-09-1137-9_147
  17. Kartini, E., Nakamura, M., Arai, M., Inamura, Y., Nakajima, K., Maksum, T., Honggowiranto, W., Putra, T.Y.S.P., (2014). Structure and dynamics of solid electrolyte (LiI)0.3(LiPO3)0.7. Solid State Ion, 262,833–836. https://doi.org/10.1016/j.ssi.2013.12.041
  18. Kaur, G., Singh, M. D., Sivasubramanian, S. C., & Dalvi, A. (2022). Investigations on enhanced ionic conduction in ionic liquid dispersed sol-gel derived LiTi2(PO4)3. Materials Research Bulletin, 145,111555. https://doi.org/10.1016/j. materresbull.2021.111555
  19. Knauth, P., (2009). Inorganic solid Li ion conductors : An overview. Solid StateIon, 180(14–16), 911–916. https://doi.org/10.1016/j.ssi. 2009.03.022
  20. Koniak, M., & Czerepicki, A. (2017). Selection of the battery pack parameters for an electric vehicle based on performance requirements. IOP Conference Series: Materials Science and Engineering, 211, 012005. https://doi.org/10.1088/1757-899x/ 211/1/012005
  21. Kuznetsov, O. A., Mohanty, S., Pigos, E., Chen, G., Cai, W., Harutyunyan, A. R. (2022). High energy density flexible and ecofriendly lithium-ion smart battery. Energy Storage Materials, 54, 266-275, https://doi.org/10.1016/j.ensm.2022.10.023
  22. Lin, X., Zhou, G., Liu, J., Yu, J., Effat, M. B., Wu, J., & Ciucci, F. (2020). Rechargeable Battery Electrolytes Capable of Operating over Wide Temperature Windows and Delivering High Safety. Advanced Energy Materials, 2001235. https://doi.org/10.1002/ aenm.202001235
  23. Ohno, S., Rosenbach, C., Dewald, G. F., Janek, J., & Zeier, W. G. (2021). Linking Solid Electrolyte Degradation to Charge Carrier Transport in the Thiophosphate‐Based Composite Cathode toward Solid‐State Lithium‐Sulfur Batteries. Advanced Functional Materials,31(18),2010620. https://doi.org/10.1002/adfm.202010620
  24. Pang, Y., Pan, J., Yang, J., Zheng, S., & Wang, C. (2021). Electrolyte/Electrode Interfaces in All-Solid-State Lithium Batteries: A Review. Electrochemical Energy Reviews, 4(2), 169–193. https://doi.org/10.1007/s41918-020-00092-1
  25. Purwamargapratala, Y., Gunawan, I., Kartini, E., Zulfia, A., Glushshenkov, A., Haerani, D., & Sudirman, S. (2022). Effect of Sodium in LiNi0,5Mn0,3Co0,2O2 as a Lithium Ion Battery Cathode Material by Solid State Reaction Method. Journal of Fibers and Polymer Composites, 1(1), 66–72. https://doi.org/10.55043/ jfpc. v1i1.41
  26. Purwamargapratala, Y., Sudaryanto, & Akbar, F. (2020). Neutron tomography study of a lithium-ion coin battery. Journal of Physics: Conference Series, 1436, 012029. https://doi.org/10.1088/1742-6596/1436/1/012029
  27. Purwamargapratala, Y., Sujatno, A., Sabayu, Y. L., & Kartini, E. (2019). Synthesis of Li4Ti5O12 (LTO) by Sol-Gel Method for Lithium-Ion Battery Anode. IOP Conference Series: Materials Science and Engineering, 553, 012062. https://doi.org/10.1088/1757899x/ 553/1/012062
  28. Quartarone E. and Mustarelli, P. (2011). Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chemical Society Reviews, 40(5), 2525–2540. https://doi.org/ 10.1039/C0CS00081G
  29. Radoń, A., Łukowiec, D., Kremzer, M., Mikuła, J., & Włodarczyk, P. (2018). Electrical Conduction Mechanism and Dielectric Properties of Spherical Shaped Fe3O4 Nanoparticles Synthesized by Co-Precipitation Method. Materials, 11(5), 735. https://doi.org/ 10.3390/ma11050735
  30. Raguenet B., Tricot, G., Silly, G., Ribes, M., and Pradel, A. (2012). The mixed glass former effect in twin-roller quenched lithium borophosphate glasses. Solid State Ion, 208, 25–30. https://doi.org/ 10.1016/j.ssi.2011.11.034
  31. Riza, M. A., Go, Y. I., Maier, R. J. R., Harun, S. W., and Anas, S. B. (2020). Hygroscopic Materials and Characterization Techniques for Fiber Sensing Applications: A Review. Sensors and Materials, 32(11), 3755–3772. https://doi.org/10.18494/SAM.2020.2967
  32. Sahu, G., Lin, Z., Li, J., Liu, Z., Dudney, N., and Liang, C. (2014). Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ Science, 7(3), 1053–1058, https://doi.org/10.1039/C3EE43357A
  33. Sassi, M., Bettaibi, A., Oueslati, A., Khirouni, K., and Gargouri, M. (2015). Electrical conduction mecha nism and transport properties of LiCrP2O7 compound. Journal Alloys Compounds, 649, 642–648. https://doi.org/10.1016/j.jallcom.2015.07.148
  34. Sen, S., Mishra, S. K., Palit, S. S., Das, S. K., & Tarafdar, A. (2008). Impedance analysis of 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 ceramic. Journal of Alloys and Compounds, 453(1-2), 395–400. https://doi.org10.1016/j.jallcom.2006.11.126
  35. Shimizu, K., Nyström, J., Geladi, P., Lindholm-Sethson, B., & Boily, J.-F. (2015). Electrolyte ion adsorption and charge blocking effect at the hematite/aqueous solution interface: an electrochemical impedance study using multivariate data analysis. Physical Chemistry Chemical Physics,17(17), 11560–11568. https://doi.org/ 10.1039/c4cp05927a
  36. Shimoda, M., Maegawa, M., Yoshida, S., Akamatsu, H., Hayashi, K., Gorai, P., and Ohno, S. (2022). Controlling Defects to Achieve Reproducibly High Ionic Conductivity in Na3SbS4 Solid Electrolytes. Chemichal. Materials. (2022). 34, 12, 5634–5643. https://doi.org/10.1021/ acs.chemmater.2c00944
  37. Subohi, O., Bowen, C. R., Malik, M. M., and Kurchania, R. (2016). Dielectric spectroscopy and ferroelectric properties of magnesium modified bismuth titanate ceramics. Journal of Alloys and Compo-unds, 688(B), 27–36. https://doi.org/10.1016/j. jallcom.2016.07.173
  38. Sudaryanto, Yulianti, E., and Jodi, H. (2015). Studies of Dielectric Properties and Conductivity of Chitosan-Lithium Triflate Electrolyte. Polymer Plastic Technology Engineering, 54(3),290–295. https://doi.org/10.1080/03602559.2014.977424
  39. Taher, Y.B., Moutia, N., Oueslati, A., and Gargouri. M. (2016). Electrical properties, conduction mechanism and modulus of diphospha te compounds. Royal Society of Chemistry Advances, 6(46), 39750–39757. https://doi.org/10.1039/C6RA05220G
  40. Takahashi, C., Shirai, T., Hayashi, Y., & Fuji, M. (2013). Study of intercalation compounds using ionic liquids into montmorillonite and their thermal stability. Solid State Ionics, 241, 53–61. https://doi.org/10.1016/j.ssi.2013.03.032
  41. Thomas, A. K., Abraham, K., Thomas, J., & Saban, K. V. (2017). Electrical and dielectric behaviour of Na0.5La0.25Sm0.25Cu3Ti4O12 ceramics investigated by impedance and modulus spectroscopy. Journal of Asian Ceramic Societies, 5(1), 56–61. https://oi.org/10.1016/j.jascer.2017.01.002
  42. Triyono, D., Fitria, S. N., & Hanifah, U. (2020). Dielectric analysis and electrical conduction mechanism of La1−xBixFeO3 cera-mics. Royal Society of Chemistry Advances, 10(31), 18323–18338. https:// doi.org/10.1039/ d0ra02402
  43. Usiskin, R., & Maier, J. (2020). Interfacial Effects in Lithium and Sodium Batteries. Advanced Energy Materials, 2001455. https://doi.org/ 10.1002/aenm.202001455
  44. Wu, F., Chen, N., Chen, R., Zhu, Q., Qian, J., & Li, L. (2016). “Liquid-in-Solid” and “Solid-in-Liquid” Electrolytes with High-Rate Capacity and Long Cycling Life for Lithium-Ion Batteries. Chemistry of Materials, 28(3), 848–856. https://doi.org/10.1021/acs. Chem mater.5b04278
  45. Xiayin. Y., Bingxin H., Jingyun Y., Gang P., Zhen H., Chao G., Deng L., and Xiaoxiong. (2016). All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science. Chinese Physics B, 25(1), 18802. https://doi.org/10.1088 /1674-1056/25/1/018802
  46. Xie, W., Wei, S., Hudon, P., Jung, I.-H., Qiao, Z., & Cao, Z. (2020). Critical evaluation and thermodynamic assessment of the R2O–P2O5 (R = Li, Na and K) systems. Computer Coupling of Phase Diagram and Thermochemistry, 68, 101718 https://doi.org/ 10.1016/j.calphad.2019.101718
  47. Zhao, Y., Wang, L., Zhou, Y., Liang, Z., Tavajohi, N., Li, B., & Li, T. (2021). Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Li‐Based Rechargeable Batteries. Advanced Science, 8(7), 2003675. https://doi.org/ 10.1002/advs.202003675

Last update:

  1. The Effect of Increasing the Thickness of NMC541 Cathode Calendaring on the Performance of Lithium-Ion Batteries

    Yustinus Purwamargapratala, Michael Hardian, Mekro Permana Pinem, Evvy Kartini, Anne Zulfia. Journal of Electronic Materials, 53 (1), 2024. doi: 10.1007/s11664-023-10783-2

Last update: 2024-12-27 18:32:36

No citation recorded.