skip to main content

Piezoelectric Performance of Microbial Chitosan Thin Film Derived from Aspergillus oryzae

1Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia (IIUM), 53100 Kuala Lumpur, Malaysia

2DIC Compounds Sdn. Bhd., Lorong Perusahaan Baru 2, Kawasan Perusahaan Perai, 13600 Perai, Penang, Malaysia

3Department of Science in Engineering, Kulliyyah of Engineering, International Islamic University Malaysia (IIUM), 53100 Kuala Lumpur, Malaysia

4 Department of Manufacturing and Materials Engineering, Kulliyyah of Engineering, International Islamic University Malaysia (IIUM), 53100 Kuala Lumpur, Malaysia

View all affiliations
Received: 29 Jun 2022; Revised: 4 Aug 2022; Accepted: 27 Aug 2022; Available online: 2 Sep 2022; Published: 1 Nov 2022.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

In this study, chitosan thin film derived from Aspergillus oryzae cell walls was fabricated and characterised. First, the chitosan from the fungal biomass was extracted (0.18 g/g) with 52.25% of degree of deacetylation obtained through Fourier transform infrared (FTIR) spectroscopy. Subsequently, several parameters of the chitosan thin film fabrication were optimised, including chitosan solution volume and drying temperature. Resultantly, the highest mechanical quality factor (3.22±0.012), the lowest dissipation factor (0.327±0.0003) and the best tensile strength (13.35±0.045 MPa) were obtained when pure chitosan was dissolved in 35 ml of 0.25 M formic acid and dried at 60 ˚C. In addition, the scanning electron microscopy (SEM) analysis presented a fine chitosan agglomerate distributed in the formic acid. The optimised fabricated, fungal-derived chitosan thin film was validated, recording a mechanical quality factor of 3.68 and dissipation factor of 0.248; both values were comparable to the synthetic polymer, polyvinylidene fluoride (PVDF) thin film. Thus, fungal-derived chitosan thin film can potentially be used as a piezoelectric material.

Fulltext View|Download
Keywords: Aspergillus oryzae; biopolymer; chitosan; deacetylation; fungi; piezoelectric; thin film
Funding: Ministry of Education under the Fundamental Research Grant Scheme (FRGS) (FRGS/1/2019/TK05/UIAM/02/7).

Article Metrics:

  1. Abdel-Gawad, K. M., Hifney, A. F., Fawzy, M. A., & Gomaa, M. (2017). Technology optimization of chitosan production from Aspergillus niger biomass and its functional activities. Food Hydrocolloids, 63, 593-60. https://doi.org/10.1016/j.foodhyd.2016.10.001
  2. Akmal, M. M., Warikh, A. R. M., Azlan, U. A. A., Azmi, N. A., Salleh, M. S., & Kasim, M. S. (2018). Optimizing the processing conditions of sodium potassium niobate thin films prepared by sol-gel spin coating technique. Ceramics International, 44(1), 317-325. https://doi.org/10.1016/j.ceramint.2017.09.175
  3. Akmal, M. H., & Warikh, A. R. M. (2021). Electrical behaviour of yttrium-doped potassium sodium niobate thin film for piezoelectric energy harvester applications. Journal of the Australian Ceramic Society, 57(2), 589-596. https://doi.org/10.1007/s41779-021-00569-2
  4. Amarande, L., Miclea, C., & Tanasoiu, C. (2007). Evaluation of the accuracy in determining the mechanical quality factor for piezoceramic resonators. Ferroelectrics, 350(1), 38-47. https://doi.org/10.1080/00150190701369776
  5. Bastiaens, L., Soetemans, L., D'Hondt, E., & Elst, K. (2019). Sources of chitin and chitosan and their isolation. Chitin and Chitosan: Properties and Applications, 1-34. https://doi.org/10.1002/9781119450467.ch1
  6. Bhuvaneshwari, S., Sruthi, D., Sivasubramanian, V., Niranjana, K., & Sugunabai, J. (2011). Development and characterization of chitosan films. Ijera, 1(2), 292-299
  7. Cai, L., Shi, H., Cao, A., & Jia, J. (2019). Characterization of gelatin/chitosan ploymer films integrated with docosahexaenoic acids fabricated by different methods. Scientific reports, 9(1), 1-11. https://doi.org/10.1038/s41598-019-44807-x
  8. Chen, C., Cai, F., Zhu, Y., Liao, L., Qian, J., Yuan, F. G., & Zhang, N. (2019). 3D printing of electroactive PVDF thin films with high β-phase content. Smart Materials and Structures, 28(6), 065017. https://doi.org/10.1088/1361-665X/ab15b7
  9. Chorsi, M. T., Curry, E. J., Chorsi, H. T., Das, R., Baroody, J., Purohit, P. K. & Nguyen, T. D. (2019). Piezoelectric biomaterials for sensors and actuators. Advanced Materials, 31(1), 1802084. https://doi.org/10.1002/adma.201802084
  10. Damjanovic, D. (1998). Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Reports on Progress in Physics, 61(9), 1267. https://doi.org/10.1088/0034-4885/61/9/002
  11. Dhillon, G. S., Kaur, S., Brar, S. K., & Verma, M. (2013). Green synthesis approach: extraction of chitosan from fungus mycelia. Critical reviews in biotechnology, 33(4), 379-403. https://doi.org/10.3109/07388551.2012.717217
  12. Ghormade, V., Pathan, E. K., & Deshpande, M. V. (2017). Can fungi compete with marine sources for chitosan production? International journal of biological macromolecules, 104, 1415-1421. https://doi.org/10.1016/j.ijbiomac.2017.01.112
  13. Hasan, M. M., & Hossain, M. M. (2021). Nanomaterials-patterned flexible electrodes for wearable health monitoring: a review. Journal of Materials Science, 56(27), 14900-14942. https://doi.org/10.1007/s10853-021-06248-8
  14. Hazmi, A. T., Ahmad, F. B., Akmal, M. M., & Ralib, A. A. M. (2021, August). Microbial chitosan for the fabrication of piezoelectric thin film. In IOP Conference Series: Materials Science and Engineering (Vol. 1173, No. 1, p. 012043). IOP Publishing. https://doi.org/10.1088/1757899X/1173/1/012043
  15. Jebur, H. A., Abdulateef, A. A., & Thbit, Z. A. (2019). Chitosan Production from Aspergillus oryzae SU-B2 by submerged fermentation and studying some of its Physiochemical and antibacterial Characteristics. Journal of Pharmaceutical Sciences and Research, 11(2), 609-613
  16. Joseph, S. M., Krishnamoorthy, S., Paranthaman, R., Moses, J. A., & Anandharamakrishnan, C. (2021). A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydrate Polymer Technologies and Applications, 2, 100036. https://doi.org/10.1016/j.carpta.2021.100036
  17. Joshi, S., Hung, S., & Vengallatore, S. (2014). Design strategies for controlling damping in micromechanical and nanomechanical resonators. EPJ Techniques and Instrumentation, 1(1), 1-14. https://doi.org/10.1140/epjti5
  18. Li, J., Yang, F., Long, Y., Dong, Y., Wang, Y., & Wang, X. (2021). Bulk ferroelectric metamaterial with enhanced piezoelectric and biomimetic mechanical properties from additive manufacturing. ACS nano, 15(9), 14903-14914. https://doi.org/10.1021/acsnano.1c05003
  19. Lin, C. H., Wang, P. H., & Wen, T. C. (2019). Chitosan production from Paecilomyces saturatus using three monosaccharides via mixture design. International journal of biological macromolecules, 141, 307-312. https://doi.org/10.1016/j.ijbiomac.2019.08.256
  20. Lohmann, R., Cousins, I. T., DeWitt, J. C., Gluge, J., Goldenman, G., Herzke, D. & Wang, Z. (2020). Are fluoropolymers really of low concern for human and environmental health and separate from other PFAS? Environmental science & technology, 54(20), 12820-12828. https://doi.org/10.1021/acs.est.0c03244
  21. Mishra, S., Unnikrishnan, L., Nayak, S. K., & Mohanty, S. (2019). Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review. Macromolecular Materials and Engineering, 304(1), 1800463. https://doi.org/10.1002/mame.201800463
  22. Paiva, W. S., Queiroz, M. F., Araujo Sabry, D., Santiago, A. L. C. M. A., Sassaki, G. L., Batista, A. C. L., & Rocha, H. A. O. (2021). Preparation, Structural Characterization, and Property Investigation of Gallic Acid-Grafted Fungal Chitosan Conjugate. Journal of Fungi, 7(10), 812. https://doi.org/10.3390/jof7100812
  23. Praveen, E., Murugan, S., & Jayakumar, K. (2017). Investigations on the existence of piezoelectric property of a bio-polymer–chitosan and its application in vibration sensors. RSC advances, 7(56), 35490-35495. https://doi.org/10.1039/C7RA04752E
  24. Rahman, N. A., Hanifah, S. A., Mobarak, N. N., Ahmad, A., Ludin, N. A., Bella, F., & Su'ait, M. S. (2021). Chitosan as a paradigm for biopolymer electrolytes in solid-state dye-sensitised solar cells. Polymer, 230, 124092. https://doi.org/10.1016/j.polymer.2021.124092
  25. Rajala, S., Schouten, M., Krijnen, G., & Tuukkanen, S. (2018). High bending-mode sensitivity of printed piezoelectric poly (vinylidenefluoride-co-trifluoroethylene) sensors. ACS omega, 3(7), 8067-8073. https://doi.org/10.1021/acsomega.8b01185
  26. Sahebi, H., Pourmortazavi, S. M., Zandavar, H., & Mirsadeghi, S. (2019). Chitosan grafted onto Fe 3 O 4@ poly (N-vinylcaprolactam) as a new sorbent for detecting Imatinib mesylate in biosamples using UPLC-MS/MS. Analyst, 144(24), 7336-7350. https://doi.org/10.1039/C9AN01654F
  27. Shekhani, H. N., & Uchino, K. (2015). Evaluation of the mechanical quality factor under high power conditions in piezoelectric ceramics from electrical power. Journal of the European Ceramic Society, 35(2), 541-544. https://doi.org/10.1016/j.jeurceramsoc.2014.08.038
  28. Singh, D., Choudhary, A., & Garg, A. (2018). Flexible and robust piezoelectric polymer nanocomposites-based energy harvesters. ACS applied materials & interfaces, 10(3), 2793-2800. https://doi.org/10.1021/acsami.7b16973
  29. Suderman, N., Isa, M. I. N., & Sarbon, N. M. (2016). Effect of drying temperature on the functional properties of biodegradable CMC-based film for potential food packaging. International Food Research Journal
  30. Toda, A., Arita, T., & Hikosaka, M. (2001). Three-dimensional morphology of PVDF single crystals forming banded spherulites. Polymer, 42(5), 2223-2233. https://doi.org/10.1016/S0032-3861(00)00446-8
  31. Wang, J., Adami, D., Lu, B., Liu, C., Maazouz, A., & Lamnawar, K. (2020). Multiscale Structural Evolution and Its Relationship to Dielectric Properties of Micro-/Nano-Layer Coextruded PVDF-HFP/PC Films. Polymers, 12(11), 2596. https://doi.org/10.3390/polym12112596
  32. Yuan, Y., Chesnutt, B. M., Haggard, W. O., & Bumgardner, J. D. (2011). Deacetylation of chitosan: Material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. https://doi.org/10.3390/ma4081399
  33. Yusharani, M. S., Ulfin, I., & Ni’mah, Y. L. (2019, April). Synthesis of water-soluble chitosan from squid pens waste as raw material for capsule shell: Temperature deacetylation and reaction time. In IOP Conference Series: Materials Science and Engineering (Vol. 509, No. 1, p. 012070). IOP Publishing. Materials, 4(8), 1399-1416. https://doi.org/10.1088/1757-899X/509/1/012070
  34. Zamani, A., Edebo, L., Niklasson, C., & Taherzadeh, M. J. (2010). Temperature shifts for extraction and purification of zygomycetes chitosan with dilute sulfuric acid. International journal of molecular sciences, 11(8), 2976-2987. https://doi.org/10.3390/ijms11082976
  35. Zamani, A., & Taherzadeh, M. (2010). Production of low molecular weight chitosan by hot dilute sulfuric acid. BioResources, 5(3), 1554-1564
  36. Zamli, M. I., Ahmad, F. B., & Akmal, M. H. M. (2021, February). Extraction of microbial chitosan for piezoelectric application. In IOP Conference Series: Materials Science and Engineering (Vol. 1045, No. 1, p. 012037). IOP Publishing. https://doi.org/10.1088/1757899X/1045/1/012037

Last update:

No citation recorded.

Last update:

No citation recorded.