Department of Computer Engineering and Financial Technology, School of Engineering, University of the Thai Chamber of Commerce, Bangkok, Thailand
BibTex Citation Data :
@article{IJRED47831, author = {Akara Kijkarncharoensin and Supachate Innet}, title = {Consistent Regime-Switching Lasso Model of the Biomass Proximate Analysis Higher Heating Value}, journal = {International Journal of Renewable Energy Development}, volume = {12}, number = {1}, year = {2023}, keywords = {consistency; prediction; higher heating value; proximate analysis}, abstract = {Prediction accuracy is crucial for higher heating value (HHV) models to promote renewable biomass energy, especially its consistency is crucial when retraining data and knowledge of the range are unavailable. Current HHV models lack consistency in accuracy and interpretability due to various reasons. Thus, this study aimed to construct an interpretable and consistent proximate-based biomass HHV model on a wide-range dataset. The model, regime-lasso, integrated the concepts of regime-switching, lasso regression, and federated averaging to construct a consistent HHV model. The regime-switching partitioned the dataset into optimal regimes, and the lasso trained the regime models. The regime-lasso model is a collection of these models. It provided root mean square error of 0.4430– 0.9050, mean absolute error of 0.2743–0.6867, and average absolute error of 1.512–4.5894% in the literature’s wide-range datasets. The Kruskal–Wallis test confirmed the in-sample performance consistency at α=0.05, regardless of the training sets. In the out-of-sample situations without retraining, the model preserved its accuracy in six out of 11 datasets at α = 0.01. The interpretability of regime-lasso indicated the regime characteristic to be a factor of inconsistent prediction. The increase in FC had the maximum positive impact on HHV in the 2nd and 3rd regimes, while the increase in ASH negatively impacted the 1st and 2nd regimes. VM variation had neutral effects in all regimes. The regime-lasso solves the issues of accuracy declination and addresses the challenges in sensitivity analysis of the HHV model. The prediction accuracy issues of the model’s direct implementation were fixed.}, pages = {87--98} doi = {10.14710/ijred.2023.47831}, url = {https://ejournal.undip.ac.id/index.php/ijred/article/view/47831} }
Refworks Citation Data :
Article Metrics:
Last update:
Last update: 2024-12-26 09:23:24
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.