skip to main content

Techno-Economic Analysis of Co-firing for Pulverized Coal Boilers Power Plant in Indonesia

1Engineering and Technology Division, Perusahaan Listrik Negara (PLN), Jakarta, Indonesia

2School of Environmental Science, University of Indonesia, Jakarta 10430, Indonesia

Received: 4 Aug 2022; Revised: 10 Dec 2022; Accepted: 2 Jan 2023; Available online: 11 Jan 2023; Published: 15 Mar 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The utilization of co-firing (coal-biomass) in existing coal-fired power plants (CFPPs) is the fastest and most effective way to increase the renewable energy mix, which has been dominated by pulverized coal (PC) boilers, particularly in the Indonesian context. This study aims to investigate the technical and economic aspects of co-firing by conducting a pilot project of three PC boiler plants and capturing several preliminary figures before being implemented for the entire plants in Indonesia. Various measured variables, such as plant efficiency, furnace exit gas temperature (FEGT), fuel characteristic, generating cost (GC), and flue gas emissions, were identified and compared between coal-firing and 5%-biomass co-firing. The result from three different capacities of CFPP shows that co-firing impacts the efficiency of the plant corresponding to biomass heating value linearly and has an insignificant impact on FEGT. Regarding environmental impact, co-firing has a high potential to reduce SO2 and NOx emissions depending on the sulfur and nitrogen content of biomass. SO2 emission decreases by a maximum of 34% and a minimum of 1.88%. While according to economic evaluation, the average electricity GC increases by about 0.25 USD cent/kWh due to biomass price per unit of energy is higher than coal by 0.64×10-3 USD cent/kcal. The accumulation in the one-year operation of 5%-biomass co-firing with a 70% capacity factor produced 285,676 MWh of green energy, equal to 323,749 tCO2e and 143,474 USD of carbon credit. The biomass prices sensitivity analysis found that the fuel price per unit of energy between biomass and coal was the significant parameter to the GC changes.

Fulltext View|Download
Keywords: co-firing; biomass; coal steam power plant; PC boiler

Article Metrics:

  1. Al-Mansour, F., & Zuwala, J. (2010). An evaluation of biomass co-firing in Europe. Biomass and Bioenergy, 34(5), 620–629. https://doi.org/10.1016/j.biombioe.2010.01.004
  2. Anugia, Z., Idris, M., & Mustika, D. (2022). Techno-Economic Comparison of Desulfurization Method for Existing Coal-Fired Power Plants: An Indonesian Case Study. 2022 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP), 48–53. https://doi.org/10.1109/ICT-PEP57242.2022.9988975
  3. Atz, U., Van Holt, T., Liu, Z. Z., & Bruno, C. C. (2022). Does sustainability generate better financial performance? review, meta-analysis, and propositions. Journal of Sustainable Finance and Investment, 1–24. https://doi.org/10.1080/20430795.2022.2106934
  4. Battista, J. J., Hughes, E. E., & Tillman, D. A. (2000). Biomass cofiring at seward station. Biomass and Bioenergy, 19(6), 419–427. https://doi.org/10.1016/S0961-9534(00)00053-2
  5. Chang, C.-C., Chen, Y.-H., Chang, W.-R., Wu, C.-H., Chen, Y.-H., Chang, C.-Y., Yuan, M.-H., Shie, J.-L., Li, Y.-S., Chiang, S.-W., Yang, T.-Y., Lin, F.-C., Ko, C.-H., Liu, B.-L., Liu, K.-W., & Wang, S.-G. (2019). The emissions from co-firing of biomass and torrefied biomass with coal in a chain-grate steam boiler. Journal of the Air & Waste Management Association, 69(12), 1467–1478. https://doi.org/10.1080/10962247.2019.1668871
  6. Dani, S., & Wibawa, A. (2018). Challanges and Policy for Biomass Energy in Indoensia. International Journal of Business, Economic and Law, 15(5), 41047. https://www.ijbel.com/wp-content/uploads/2018/04/IJBEL15_212.pdf
  7. Devaraja, U. M. A., Supunsala, S. D. S., & Gunarathne, D. S. (2020). Technical and Environmental Feasibility of Co-firing Torrefied Biomass in a Coal-fired Power Plant. 2020 Moratuwa Engineering Research Conference (MERCon), 499–504. https://doi.org/10.1109/MERCon50084.2020.9185228
  8. Dong, C., Jin, B., Zhong, Z., & Lan, J. (2002). Tests on co-firing of municipal solid waste and coal in a circulating fluidized bed. Energy Conversion and Management, 43(16), 2189–2199. https://doi.org/10.1016/S0196-8904(01)00157-1
  9. Dzikuć, M., & Łasiński, K. (2014). Technical and Economic Aspects of Biomass Co-Firing in Coal-Fired Boilers. International Journal of Applied Mechanics and Engineering, 19(4), 849–855. https://doi.org/10.2478/ijame-2014-0060
  10. Ekmann, J. M., Winslow, J. C., Smouse, S. M., & Ramezan, M. (1998). International survey of cofiring coal with biomass and other wastes. Fuel Processing Technology, 54(1–3), 171–188. https://doi.org/10.1016/S0378-3820(97)00068-4
  11. Gil, M. V, & Rubiera, F. (2019). 5 - Coal and biomass cofiring: fundamentals and future trends (I. Suárez-Ruiz, M. A. Diez, & F. B. T.-N. T. in C. C. Rubiera (eds.); pp. 117–140). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102201-6.00005-4
  12. Higman, C., & van der Burgt, M. (2008). Chapter 4 - Feedstocks and Feedstock Characteristics (C. Higman & M. B. T.-G. (Second E. van der Burgt (eds.); pp. 47–90). Gulf Professional Publishing. https://doi.org/10.1016/B978-0-7506-8528-3.00004-3
  13. Hodžić, N., Metović, S., & Kazagić, A. (2018). Effects on NOX and SO2 emissions during co-firing of coal with woody biomass in air staging and reburning. International Journal of Renewable Energy Development, 7(1), 1–6. https://doi.org/10.14710/ijred.7.1.1-6
  14. Ibham Veza, Mohd Farid Muhamad Said, Mohd Azman Abas, Zulkarnain Abdul Latiff, Mohd Rozi Mohd Perang, & Djati Wibowo Djamari. (2021). Future Direction of Microalgae Biodiesel in Indonesia. Journal of Advanced Research in Applied Sciences and Engineering Technology, 25(1), 1–6. https://doi.org/10.37934/araset.25.1.16
  15. Jia, Z., & Lin, B. (2021). How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective. Energy, 233, 121179. https://doi.org/10.1016/j.energy.2021.121179
  16. Kazulis, V., Vigants, H., Veidenbergs, I., & Blumberga, D. (2018). Biomass and natural gas co-firing - Evaluation of GHG emissions. Energy Procedia, 147, 558–565. https://doi.org/10.1016/j.egypro.2018.07.071
  17. Koundouri, P., Pittis, N., & Plataniotis, A. (2022). The Impact of ESG Performance on the Financial Performance of European Area Companies: An Empirical Examination. Environmental Sciences Proceedings, 15(1), 13. https://doi.org/10.3390/environsciproc2022015013
  18. Lamb, W. F., Wiedmann, T., Pongratz, J., Andrew, R., Crippa, M., Olivier, J. G. J., Wiedenhofer, D., Mattioli, G., Khourdajie, A. Al, House, J., Pachauri, S., Figueroa, M., Saheb, Y., Slade, R., Hubacek, K., Sun, L., Ribeiro, S. K., Khennas, S., De La Rue Du Can, S., … Minx, J. (2021). A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters, 16(7), 73005. https://doi.org/10.1088/1748-9326/abee4e
  19. Li, J., Brzdekiewicz, A., Yang, W., & Blasiak, W. (2012). Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching. Applied Energy, 99, 344–354. https://doi.org/10.1016/j.apenergy.2012.05.046
  20. Mahidin, M., Erdiwansyah, E., Zaki, M., Umar, H., Hisbullah, Mamat, R., & Susanto, H. (2020). Potential And Utilization Of Biomass For Heat Energy In Indonesia: A Review. International Journal of Scientific & Technology Research, 9, 331–344. https://www.ijstr.org/final-print/oct2020/Potential-And-Utilization-Of-Biomass-For-Heat-Energy-In-Indonesia-A-Review.pdf
  21. Mehmood, S., Reddy, B. V., & Rosen, M. A. (2012). Energy analysis of a biomass co-firing based pulverized coal power generation system. Sustainability, 4(4), 462–490. https://doi.org/10.3390/su4040462
  22. Mehmood, S., V. Reddy, B., & A. Rosen, M. (2014). Analysis of Emissions and Furnace Exit Gas Temperature for a Biomass Co-firing Coal Power Generation System. Research Journal of Environmental Sciences, 8(5), 274–286. https://doi.org/10.3923/rjes.2014.274.286
  23. Miedema, J. H., Benders, R. M. J., Moll, H. C., & Pierie, F. (2017). Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant. Applied Energy, 187, 873–885. https://doi.org/10.1016/j.apenergy.2016.11.033
  24. Moroń, W., & Rybak, W. (2015). NOx and SO2 emissions of coals, biomass and their blends under different oxy-fuel atmospheres. Atmospheric Environment, 116, 65–71. https://doi.org/10.1016/j.atmosenv.2015.06.013
  25. Mun, T. Y., Tumsa, T. Z., Lee, U., & Yang, W. (2016). Performance evaluation of co-firing various kinds of biomass with low rank coals in a 500 MWe coal-fired power plant. Energy, 115, 954–962. https://doi.org/10.1016/j.energy.2016.09.060
  26. Primadita, D. S., Kumara, I. N. S., & Ariastina, W. G. (2020). A Review on Biomass for Electricity Generation in Indonesia. Journal of Electrical, Electronics and Informatics, 4(1), 1. https://doi.org/10.24843/jeei.2020.v04.i01.p01
  27. Roni, M. S., Chowdhury, S., Mamun, S., Marufuzzaman, M., Lein, W., & Johnson, S. (2017). Biomass co-firing technology with policies, challenges, and opportunities: A global review. Renewable and Sustainable Energy Reviews, 78, 1089–1101. https://doi.org/10.1016/j.rser.2017.05.023
  28. Srivastava, R. K., Shetti, N. P., Reddy, K. R., Kwon, E. E., Nadagouda, M. N., & Aminabhavi, T. M. (2021). Biomass utilization and production of biofuels from carbon neutral materials. Environmental Pollution, 276, 116731. https://doi.org/10.1016/j.envpol.2021.116731
  29. Sugiyono, A., Febijanto, I., Hilmawan, E., & Adiarso. (2022). Potential of biomass and coal co-firing power plants in Indonesia: a PESTEL analysis. IOP Conference Series: Earth and Environmental Science, 963(1), 12007. https://doi.org/10.1088/1755-1315/963/1/012007
  30. The Decree of Ministry of Energy and Mineral Resouces No188.K/HK.02/MEM.L/2021. (2021). RUPTL 2021-2030. Jakarta. https://gatrik.esdm.go.id/assets/uploads/download_index/files/38622-ruptl-pln-2021-2030.pdf
  31. Tillman, D. A. (2000). Biomass cofiring: The technology, the experience, the combustion consequences. Biomass and Bioenergy, 19(6), 365–384. https://doi.org/10.1016/S0961-9534(00)00049-0
  32. Verma, T. N., Dasore, A., Shrivastava, P., Ağbulut, Ü., & ... (2021). Financial, energy, performance and emission analysis of a repurpose used cooking oil (RUCO) diesel fuel blends. 01 March 2021, PREPRINT (Version 1) available at Research Square https://doi.org/10.21203/rs.3.rs-158462/v1
  33. Wahyudi, W. F., & Garniwa M.K., I. (2021). Economic and Financial Analysis of Cofiring the Coal Fired Steam Power Plant Capacity 660 MW with Biomass (. Andalas Journal of Electrical and Electronic Engineering Technology, 1(1), 27–30. https://doi.org/10.25077/ajeeet.v1i1.11
  34. Whelan, T., Atz, U., Van Holt, T., & Clark, C. (2021). ESG and Financial Performance: Uncovering the Relationship by Aggregating Evidence from 1,000 Plus Studies Published between 2015-2020. NYU | STERN Report, 520–536. https://www.stern.nyu.edu/sites/default/files/assets/documents/NYU-RAM_ESG-Paper_2021 Rev_0.pdf
  35. Wulandari, S., Sumanto, S., & Saefudin, S. (2020). Pengelolaan Biomassa Tanaman dalam Bioindustri Perkebunan Mendukung Pengembangan Bioenergi. Plant Biomass Management in Plantations Bioindustry Supporting Bioenergy Development. Perspektif, 18(2), 135. https://doi.org/10.21082/psp.v18n2.2019.135-149
  36. Xu, Y., Yang, K., Zhou, J., & Zhao, G. (2020). Coal-biomass co-firing power generation technology: Current status, challenges and policy implications. Sustainability (Switzerland), 12(9), 3692. https://doi.org/10.3390/su12093692
  37. Yokoyama, S., & Matsumura, Y. (2008). The Asian Biomass Handbook: A Guide for Biomass Production and Utilization. The Japan Institute of Energy, 324. https://www.jie.or.jp/relays/download/?file=/files/libs/732/201708300901271178.pdf

Last update:

  1. Techno-Economic and Environmental Impact of Biomass Co-Firing with Carbon Capture and Storage in Indonesian Power Plants

    Mujammil Asdhiyoga Rahmanta, Almas Aprilana, Ruly, Nur Cahyo, Tiva Winahyu Dwi Hapsari, Eko Supriyanto. Sustainability, 16 (8), 2024. doi: 10.3390/su16083423
  2. Technical-economic-environmental analysis of biomass direct and indirect co-firing in pulverized coal boiler in China

    Wenyu Mo, Kuan Du, Yi Sun, Minruo Guo, Chao Zhou, Mo You, Jun Xu, Long Jiang, Yi Wang, Sheng Su, Song Hu, Jun Xiang. Journal of Cleaner Production, 426 , 2023. doi: 10.1016/j.jclepro.2023.139119
  3. A techno-economic and environmental analysis of co-firing implementation using coal and wood bark blend at circulating fluidized bed boiler

    Nur Cahyo, Desy Sulistyowati, Mujammil Asdhiyoga Rahmanta, Muhamad Iqbal Felani, Mochamad Soleh, Paryanto Paryanto, Adi Prismantoko, Hariana Hariana. International Journal of Renewable Energy Development, 13 (4), 2024. doi: 10.61435/ijred.2024.60234
  4. The environmental perspective on biomass co-firing operations at coal-fired power plants in the Banten region, Indonesia: a life cycle approach

    Irhan Febijanto, Rosmeika Rosmeika, Nadirah Nadirah, Ahmad Ismed Yanuar, Adolf Leopold Sihombing, I. Made Agus Dharma Susila, Hismiaty Bahua, Inna Zulfa Kurniawati, Arief Barkah, Arif Dwi Santoso, Rudi Herdioso, Bambang Rustianto, M. A. M. Oktaufik, Yaya Suryana, Edy Syamsudin, Aditiyawan Aditiyawan, Nizam Gazali, Dadi Soedjati, Mochamad Soleh. Energy, Ecology and Environment, 2024. doi: 10.1007/s40974-024-00329-5

Last update: 2024-06-30 15:10:01

No citation recorded.