skip to main content

Utilization of Cassava Peel (Manihot utilissima) Waste as an Adhesive in the Manufacture of Coconut Shell (Cocos nucifera) Charcoal Briquettes

1Energy Engineering Laboratory, Departement of Renewable Energy Engineering, Politeknik Negeri Jember, Jl. Mastrip 164 Jember 68121, Indonesia

2Graduate Program of Mechanical Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami No.36 Surakarta, 57126, Indonesia

3Department of Chemistry, Universitas Jember, Jl. Kalimantan 37 Kampus Tegalboto, Jember 68121, Indonesia

4 Department of Mechanical Engineering, Politeknik Negeri Semarang, Jl. Prof. H. Soedarto S.H. Semarang, 50275, Indonesia

View all affiliations
Received: 20 Aug 2022; Revised: 24 Nov 2022; Accepted: 2 Jan 2023; Available online: 12 Jan 2023; Published: 15 Mar 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Coconut shells and waste cassava peels could be used as the main raw material for biomass briquettes for alternative energy sources in Indonesia. This study aims to analyze the quality of briquettes based on a coconut shell and cassava peel adhesive through proximate analysis with three treatment ratio variations. The ratio of coconut shell to cassava peel used varied from V1 (75%:25%), V2 (70%:30%), and V3 (65%:35%). Based on the result, the charcoal briquettes produced have a density of 0.61 gram/cm³-0.66 gram/cm³, water content of 5.51%-7.85%, ash content of 1.50%-2.86%, combustion rate of 0.021 gram/s-0.026 gram/s, and the calorific value of 6,161 cal/gram-6,266 cal/gram. However, all the treatment variations appropriate the SNI 01-6235-2000, the national standard of Indonesia for the quality of charcoal briquette, which includes the calorific value (>5,000 cal/gram), moisture content (<8%), and ash content (<8%). Briquettes with the best quality were generated by V1 with a density of 0.66 gram/cm³, water content of 5.51%, ash content of 1.50%, combustion rate of 0.026 gram/s, and calorific value of 6,266 cal/gram. Furthermore, briquette material from the coconut shell waste with natural cassava peel adhesive can be feasible as an alternative fuel.
Fulltext View|Download
Keywords: Biomass; Briquettes; Cassava Peel Waste; Coconut Shell; Proximate Analysis

Article Metrics:

  1. Abyaz, A., Afra, E., & Saraeyan, A. (2020). Improving technical parameters of biofuel briquettes using cellulosic binders. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 00(00), 1–12. https://doi.org/10.1080/15567036.2020.1806955
  2. Adeleke, A. A., Odusote, J. K., Ikubanni, P. P., Olabisi, A. S., & Nzerem, P. (2022). Briquetting of subbituminous coal and torrefied biomass using bentonite as inorganic binder. Scientific Reports, 12(1), 1–11. https://doi.org/10.1038/s41598-022-12685-5
  3. Anggraeni, S., Girsang, G. C. S., Nandiyanto, A. B. D., & Bilad, M. R. (2021). Effects of particle size and composition of sawdust/carbon from rice husk on the briquette performance. Journal of Engineering Science and Technology, 16(3), 2298–2311
  4. Aransiola, E. F., Oyewusi, T. F., Osunbitan, J. A., & Ogunjimi, L. A. O. (2019). Effect of binder type, binder concentration and compacting pressure on some physical properties of carbonized corncob briquette. Energy Reports, 5, 909–918. https://doi.org/10.1016/j.egyr.2019.07.011
  5. Ardelean, E., Socalici, A., Lupu, O., Bistrian, D., Dobrescu, C., & Constantin, N. (2022). Recovery of Waste with a High Iron Content in the Context of the Circular Economy. Materials, 15(14), 1–18. https://doi.org/10.3390/ma15144995
  6. Bazhin, V. Y., Kuskov, V. B., & Kuskova, Y. V. (2019). Processing of low-demand coal and other carbon-containing materials for energy production purposes. Inzynieria Mineralna, 2019(1), 195–198. https://doi.org/10.29227/IM-2019-01-37
  7. BPPT. (2021). Indonesia Energy Outlook 2021: Perspective of Indonesian Energy Technology - Solar Power for Charging Station Energy Supply. Jakarta
  8. Budi Surono, U. (2019). Biomass Utilization of Some Agricultural Wastes as Alternative Fuel in Indonesia. Journal of Physics: Conference Series, 1175(1). https://doi.org/10.1088/1742-6596/1175/1/012271
  9. Cuong, T. T., Le, H. A., Khai, N. M., Hung, P. A., Linh, L. T., Thanh, N. V., … Huan, N. X. (2021). Renewable energy from biomass surplus resource: potential of power generation from rice straw in Vietnam. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-020-80678-3
  10. Dani, S., & Wibawa, A. (2018). Challanges and Policy for Biomass Energy in Indonesia. International Journal of Business, Economic and Law, 15(5), 41047
  11. Directorate General of Plantation. (2021). National Leading Plantation Statistics 2019-2021 (D. Gartina & R. L. L. Sukriya, eds.). Jakarta: Sekterariat Direktorat Jenderal Perkebunan
  12. Ganesan, S., & Vedagiri, P. (2022). “Production of sustainable biomass briquettes from de-oiled cashewnut Shell.” Materials Today: Proceedings, (xxxx). https://doi.org/10.1016/j.matpr.2022.09.179
  13. Ghafar, H., Halidi, S. N. A. M., & So’aib, M. S. (2020). Coconut Shell: Thermogravimetric Analysis and Gross Calorific Value. Proceedings of Mechanical Engineering Research Day, 206–207
  14. Guo, Z., Wu, J., Zhang, Y., Wang, F., Guo, Y., Chen, K., & Liu, H. (2020). Characteristics of biomass charcoal briquettes and pollutant emission reduction for sulfur and nitrogen during combustion. Fuel, 272(April), 117632. https://doi.org/10.1016/j.fuel.2020.117632
  15. Haryanti, N. H., Wardhana, H., & Suryajaya. (2020). Effect of Pressure on Alaban Charcoal Briquettes Small Particle Size. Jurnal Risalah Fisika, 4(1), 19–26. https://doi.org/https://doi.org/10.35895/rf.v4i1.170
  16. Hasan, E. S., Jahiding, M., Mashuni, Ilmawati, W. O. S., Wati, W., & Sudiana, I. N. (2017). Proximate and the Calorific Value Analysis of Brown Coal for High-Calorie Hybrid Briquette Application. Journal of Physics: Conference Series, 846(1). https://doi.org/10.1088/1742-6596/846/1/012022
  17. Helwani, Z., Ramli, M., Rusyana, A., Marlina, M., Fatra, W., Idroes, G. M., … Idroes, R. (2020). Alternative briquette material made from palm stem biomass mediated by glycerol crude of biodiesel byproducts as a natural adhesive. Processes, 8(7). https://doi.org/10.3390/pr8070777
  18. Hirniah, F. E. (2020). Energy Analysis in Making Charcoal Briquettes from Cassava Peel with Tapioca Flour as Adhesive. Universitas Jember, Jember
  19. Jiang, X., Wu, C., Zhou, H., Gao, B., Fang, X., Han, J., & Gao, W. (2022). Relationship between thermal properties and structure, composition of briquette through grey relational analysis. Journal of Applied Geophysics, 206(November 2021), 104786. https://doi.org/10.1016/j.jappgeo.2022.104786
  20. Kabir Ahmad, R., Anwar Sulaiman, S., Yusup, S., Sham Dol, S., Inayat, M., & Aminu Umar, H. (2022). Exploring the potential of coconut shell biomass for charcoal production. Ain Shams Engineering Journal, 13(1), 101499. https://doi.org/10.1016/j.asej.2021.05.013
  21. Kamunur, K., Ketegenov, T., Kalugin, S., Karagulanova, A., & Zhaksibaev, M. (2022). The role of the alkaline promoter on the formation of strength and burning of coal briquettes. South African Journal of Chemical Engineering, 42(May), 156–161. https://doi.org/10.1016/j.sajce.2022.08.009
  22. Karimibavani, B., Sengul, A. B., & Asmatulu, E. (2020). Converting briquettes of orange and banana peels into carbonaceous materials for activated sustainable carbon and fuel sources. Energy, Ecology and Environment, 5(3), 161–170. https://doi.org/10.1007/s40974-020-00148-4
  23. Kariuki, S. W., Muthengia, J. W., Erastus, M. K., Leonard, G. M., & Marangu, J. M. (2020). Characterization of composite material from the copolymerized polyphenolic matrix with treated cassava peels starch. Heliyon, 6(7), e04574. https://doi.org/10.1016/j.heliyon.2020.e04574
  24. Kayiwa, R., Kasedde, H., Lubwama, M., & Kirabira, J. B. (2021a). Characterization and pre-leaching effect on the peels of predominant cassava varieties in Uganda for production of activated carbon. Current Research in Green and Sustainable Chemistry, 4(February), 100083. https://doi.org/10.1016/j.crgsc.2021.100083
  25. Kayiwa, R., Kasedde, H., Lubwama, M., & Kirabira, J. B. (2021b). The potential for commercial scale production and application of activated carbon from cassava peels in Africa: A review (Elsevier Ltd; Vol. 15). Elsevier Ltd. https://doi.org/10.1016/j.biteb.2021.100772
  26. Kong, S. H., Loh, S. K., Bachmann, R. T., Rahim, S. A., & Salimon, J. (2014). Biochar from Oil Palm Biomass: A Review of its Potential and Challenges. Journal Renewable and Sustainable Energy Reviews, 39, 729–739. https://doi.org/10.1016/j.rser.2014.07.107
  27. Lu, Z., Chen, X., Yao, S., Qin, H., Zhang, L., Yao, X., … Lu, J. (2019). Feasibility study of gross calorific value, carbon content, volatile matter content and ash content of solid biomass fuel using laser-induced breakdown spectroscopy. Fuel, 258(September), 116150. https://doi.org/10.1016/j.fuel.2019.116150
  28. Maryono, Sudding, & Rahmawati. (2013). Preparation and Quality Analysis of Coconut Shell Charcoal Briquette Observed by Starch Concentration. Journal Chemical, 14(1), 74–83
  29. Maulina, S., Sarah, M., Misran, E., & Anita, M. F. (2021). The correlation of ultimate analysis and calorific value on palm oil briquettes using durian seed adhesives. IOP Conference Series: Materials Science and Engineering, 1122(1), 012079. https://doi.org/10.1088/1757-899x/1122/1/012079
  30. Meytij, J. R., Santoso, I. R. S., Rampe, H. L., Tiwow, V. A., & Apita, A. (2021). Infrared Spectra Patterns of Coconut Shell Charcoal as Result of Pyrolysis and Acid Activation Origin of Sulawesi, Indonesia. E3S Web of Conferences, 328, 08008. https://doi.org/10.1051/e3sconf/202132808008
  31. Ministry of Agriculture. (2021). Agricultural Statistics 2021 (A. A. Susanti & M. A. Supriyatna, Eds.). Jakarta: Center for Agricultural Data and Information Systems, Ministry of Agriculture, Republic of Indonesia
  32. Modolo, R. C. E., Silva, T., Senff, L., Tarelho, L. A. C., Labrincha, J. A., Ferreira, V. M., & Silva, L. (2015). Bottom ash from biomass combustion in BFB and its use in adhesive-mortars. Fuel Processing Technology, 129, 192–202. https://doi.org/10.1016/j.fuproc.2014.09.015
  33. Niño, A., Arzola, N., & Araque, O. (2020). Experimental study on the mechanical properties of biomass briquettes from a mixture of rice husk and pine sawdust. Energies, 13(5). https://doi.org/10.3390/en13051060
  34. Nurhilal, O., Suryaningsih, S., & Indrana, I. (2018). Study of Thermal Efficiency of Biomass Carbonizing by Direct Method. Journal of Physics: Conference Series, 1080
  35. Rizal, W. A., Nisa, K., Maryana, R., Prasetyo, D. J., Pratiwi, D., Jatmiko, T. H., … Suwanto, A. (2020). Chemical composition of liquid smoke from coconut shell waste produced by SME in Rongkop Gunungkidul. IOP Conference Series: Earth and Environmental Science, 462(1). https://doi.org/10.1088/1755-1315/462/1/012057
  36. Román Gómez, Y., Cabanzo Hernández, R., Guerrero, J. E., & Mejía-Ospino, E. (2018). FTIR-PAS coupled to partial least squares for prediction of ash content, volatile matter, fixed carbon and calorific value of coal. Fuel, 226(April), 536–544. https://doi.org/10.1016/j.fuel.2018.04.040
  37. Sarkar, J. K., & Wang, Q. (2020). Different Pyrolysis Process Conditions of South Asian Waste Coconut Shell and Characterization of Gas, Bio-Char, and Bio-Oil. Energies
  38. Satya, M., Raju, C. A. I., Praveena, U., & Jyothi, K. R. (2014). Studies on Development of Fuel Briquettes Using Locally Available Waste. Journal of Engineering Research and Applications, 4(3), 553–559
  39. Setter, C., Sanchez Costa, K. L., Pires de Oliveira, T. J., & Farinassi Mendes, R. (2020). The effects of kraft lignin on the physicomechanical quality of briquettes produced with sugarcane bagasse and on the characteristics of the bio-oil obtained via slow pyrolysis. Fuel Processing Technology, 210(August), 106561. https://doi.org/10.1016/j.fuproc.2020.106561
  40. Srisang, S., Phetpan, K., Ruttanadech, N., Limmun, W., Youryon, P., Kongtragoul, P., … Chungcharoen, T. (2022). Charcoal briquette production from waste in the coffee production process using hydrothermal and torrefaction techniques: A comparative study with carbonization technique. Journal of Cleaner Production, 372(August), 133744. https://doi.org/10.1016/j.jclepro.2022.133744
  41. Sulistyaningkarti, L., & Utami, B. (2017). Making Charcoal Briquettes from Corncob Organic Waste Using Variations in Type and Percentage of Adhesives. Jurnal Kimia Dan Pendidikan Kimia, 2(1), 43–53
  42. Sunardi, Djuanda, & Mandra, M. A. S. (2019). Characteristics of Charcoal Briquettes from Agricultural Waste with Compaction Pressure and Particle Size Variation as Alternative Fuel. International Energy Journal, 19, 139–148
  43. Suryaningsih, S., Resitasari, R., & Nurhilal, O. (2019). Analysis of biomass briquettes based on carbonized rice husk and jatropha seed waste by using newspaper waste pulp as an adhesive material. Journal of Physics: Conference Series, 1280(2). https://doi.org/10.1088/1742-6596/1280/2/022072
  44. Syarief, A., Nugraha, A., Ramadhan, M. N., Fitriyadi, & Supit, G. G. (2021). Effect of Variation in Composition and Type of Adhesive on Physical Properties and Burning Characteristics of Alaban Wood Charcoal Waste Briquettes (Vitex pubescens VAHL) Rice Husk (Oryza sativa L). Proceedings of the National Wetland Environment Seminar. Banjarmasin
  45. Todaro, L., Rita, A., Cetera, P., & D’Auria, M. (2015). Thermal treatment modifies the calorific value and ash content in some wood species. Fuel, 140, 1–3. https://doi.org/10.1016/j.fuel.2014.09.060
  46. Tu, W., Liu, Y., Xie, Z., Chen, M., Ma, L., Du, G., & Zhu, M. (2021). A novel activation-hydrochar via hydrothermal carbonization and KOH activation of sewage sludge and coconut shell for biomass wastes: Preparation, characterization and adsorption properties. Journal of Colloid and Interface Science, 593, 390–407. https://doi.org/10.1016/j.jcis.2021.02.133
  47. Tzelepi, V., Zeneli, M., Kourkoumpas, D. S., Karampinis, E., Gypakis, A., Nikolopoulos, N., & Grammelis, P. (2020). Biomass availability in europe as an alternative fuel for full conversion of lignite power plants: A critical review. Energies, 13(13). https://doi.org/10.3390/en13133390
  48. Vaish, S., Sharma, N. K., & Kaur, G. (2022). A review on various types of densification/briquetting technologies of biomass residues. IOP Conference Series: Materials Science and Engineering, 1228(1), 012019. https://doi.org/10.1088/1757-899x/1228/1/012019
  49. Velusamy, S., Subbaiyan, A., Kandasamy, S., Shanmugamoorthi, M., & Thirumoorthy, P. (2022). Combustion characteristics of biomass fuel briquettes from onion peels and tamarind shells. Archives of Environmental and Occupational Health, 77(3), 251–262. https://doi.org/10.1080/19338244.2021.1936437
  50. Yana, S., Nizar, M., Irhamni, & Mulyati, D. (2022). Biomass waste as a renewable energy in developing bio-based economies in Indonesia: A review. Renewable and Sustainable Energy Reviews, 160(5), 112268. https://doi.org/10.1016/j.rser.2022.112268

Last update:

  1. Quality of Charcoal Briquettes from Sawdust Waste of Ulin (Eusideroxylon zwageri) and Coconut Shell (Cocos nucifera) Based on Variations in Ratio and Particle Size

    S A Handayani, K Y Widiati, F Putri. IOP Conference Series: Earth and Environmental Science, 1282 (1), 2023. doi: 10.1088/1755-1315/1282/1/012049
  2. Investigating the tribological behavior of bioinspired surfaces in agro-waste and alumina reinforced AA6063 matrix composites

    F. Ben, P.A. Olubambi. Vacuum, 230 , 2024. doi: 10.1016/j.vacuum.2024.113687
  3. Multi-response optimization of charcoal briquettes process for green economy using a novel TOPSIS linear programming and genetic algorithms based on response surface methodology

    Narathip Pawaree, Surasit Phokha, Chawisorn Phukapak. Results in Engineering, 22 , 2024. doi: 10.1016/j.rineng.2024.102226

Last update: 2024-10-11 09:30:38

No citation recorded.