Materials and Components for Low Temperature Solid Oxide Fuel Cells – an Overview

*D. Radhika  -  Department of Chemistry, School of Science and Humanities, Karunya University, Coimbatore – 641 114,, India
A. S. Nesaraj  -  Department of Chemistry, School of Science and Humanities, Karunya University, Coimbatore – 641 114,, India
Published: 17 Jun 2013.
Open Access Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
This article summarizes the recent advancements made in the area of materials and components for low temperature solid oxide fuel cells (LT-SOFCs). LT-SOFC is a new trend in SOFC technology since high temperature SOFC puts very high demands on the materials and too expensive to match marketability. The current status of the electrolyte and electrode materials used in SOFCs, their specific features and the need for utilizing them for LT-SOFC are presented precisely in this review article. The section on electrolytes gives an overview of zirconia, lanthanum gallate and ceria based materials. Also, this review article explains the application of different anode, cathode and interconnect materials used for SOFC systems. SOFC can result in better performance with the application of liquid fuels such methanol and ethanol. As a whole, this review article discusses the novel materials suitable for operation of SOFC systems especially for low temperature operation.
Keywords: components; low temperature operation, materials; performance characteristics; solid oxide fuel cel

Article Metrics:

  1. Abbas, G., Chaudhry, A., Raza, M.R., Liu, Q., Qin, H.and Zhu, B. (2012) Study of CuNiZnGdCe-nanocomposite anode for low temperature SOFC. Nanoscience and Nanotechnology Letters,4, 389 -393. https://doi.org/10.1166/nnl.2012.1306
  2. Adler,S.B.(1998) Mechanism and kinetics of oxygen reduction on porous La1-xSrxCoO3-δelectrodes. Solid State Ionics,111, 125 -134. https://doi.org/10.1016/S0167-2738(98)00179-9
  3. Bastidas (2006) High temperature corrosion of metallic interconnects in solid oxide fuel cells. Revista De Metalurgia,42,425 -443. https://doi.org/10.3989/revmetalm.2006.v42.i6.41
  4. Bo, W., Zhe, L., Xiqiang, H., Jipeng, M., Xueing, S., Xianshuang, X.andWenhui, S.(2006) Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1−xCo0.8Fe0.2O3−δ(0.3≤x≤0.7). Journal of European Ceramic Society,26, 2827 -2832. https://doi.org/10.1016/j.jeurceramsoc.2005.06.047
  5. Bongio,E.V., Black,H., Raszewski,F.C., Edwards,D., McConville,C.J.and Amarakoon,V.R.W.(2005) Microstructural and high-temperature electrical characterization of La1−xSrxFeO3-δ. Journal of Electroceramics,14,193 -198. https://doi.org/10.1007/s10832-005-0957-4
  6. Boudghene,S.A.and Traversa,E.(2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews,6, 433-455. https://doi.org/10.1016/S1364-0321(02)00014-X
  7. Chen,W.X., Wen,T., Nie,H.and Zheng,R.(2003) Study of Ln0.6SR0.4Co0.8Mn0.2O3-δ(Ln = La, Gd, Sm or Nd) as the cathode materials for intermediate temperature SOFC. Materials Research Bulletin,38, 1319 -1328. https://doi.org/10.1016/S0025-5408(03)00143-0
  8. Chiba,R., Yoshimura,F.and Sakurai,Y.(1999) An investigation of LaNi1−xFexO3as a cathode material for solid oxide fuel cells. Solid State Ionics, 124, 281 -288. https://doi.org/10.1016/S0167-2738(99)00222-2
  9. Datta,P.(2009) Doped LaGaO3 based solid oxide fuel cell materials and their sintering aspects: an overview. Materials Science Forum,624, 109-137. https://doi.org/10.4028/www.scientific.net/MSF.624.109
  10. Dusastrre,V.and Kilner,J.A.(1999) Optimisation of composite cathodes for intermediate temperature SOFC application. Solid State Ionics,126, 163 -174. https://doi.org/10.1016/S0167-2738(99)00108-3
  11. Froitzheim,J.and Svensson,J.E.(2010) Nanocoatings for SOFC Interconnects -Mitigating Chromium Volatilization and Improving Corrosion Properties. Materials Science Forum,696, 412 -416. https://doi.org/10.4028/www.scientific.net/MSF.696.412
  12. Fuentes,R.O.and Baker,R.T.(2008) Synthesis and properties of Gadolinium-doped ceria solid solutions for IT-SOFC electrolytes. International Journal of Hydrogen Energy,33, 3480-3484. https://doi.org/10.1016/j.ijhydene.2007.10.026
  13. Godickemeier,M., Sasaki,K., Gauckler,L.J.and Reiss,I.(1996) Perovskite cathodes for solid oxide fuel cells based on ceria electrolytes. Solid tate Ionics,86-88, 69l-701. https://doi.org/10.1016/0167-2738(96)00149-X
  14. Goodenough,J.B.(2000) Oxide-ion conductors by design. Nature, 404, 821 -823. https://doi.org/10.1038/35009177
  15. Gort,R.J.and Vohs,J.M.(2003) Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. Journal of Catalysis216, 477-486. https://doi.org/10.1016/S0021-9517(02)00121-5
  16. Haanappel,V.A.C., Mertens,J.and Mai,A.(2006) Performance Improvement of (La,Sr)MnO3and (La,Sr)(Co,Fe)O3-Type Anode-Supported SOFCs. Journal of Fuel Cell Science and Technology,3, 263 -270. https://doi.org/10.1115/1.2205359
  17. Heuveln van, F.H., Bouwmeester, H.J.M. and Berkel van F.P.F (1997) Electrode properties of Sr-doped LaMnO3 on yttria-stabilized zirconia I: Three-phase boundary area. Journal of Electrochemical Society, 144, 126-133. https://doi.org/10.1149/1.1837374
  18. Holtappels,P., Bradley,J., Irvine,J.T.S., KaisermA.and Mogensen,M.(2001) Electrochemical characterization of ceramic SOFC anodes. Journal of Electrochem Society,148, A 923 -A 929. https://doi.org/10.1149/1.1383774
  19. Huang, K., Feng, M., Goodenough, J.B. and Schmerling, M. (1996) Characterization of Sr‐Doped LaMnO3 and LaCoO3 as Cathode Materials for a Doped LaGaO3 Ceramic Fuel Cell. Journal of Electrochemical Society, 143, 3630 -3636. https://doi.org/10.1149/1.1837262
  20. Inaba,H.and Tagawa,H.(1996) Cceria-based solid electrolyte: review. Solid State Ionics,83,1 -16. https://doi.org/10.1016/0167-2738(95)00229-4
  21. Irvine,J.T.S.and Sauvet,A.(2001) Improved oxidation of hydrocarbons with new electrodes in high temperature fuel cells. Fuel Cells,1, 205 -210
  22. https://doi.org/10.1002/1615-6854(200112)1:3/4<205::AID-FUCE205>3.0.CO;2-5
  23. Ishihara,T., Honda,M., Shibayama,T., Minami,H., Nishiguchi,H.and Takita, V.(1998) Intermediate temperature solid oxide fuel cells using a new LaGaO3based oxide ion conductor-I. Doped SmCoO3as a new cathode material. Journal of Electrochemical Society,145,3177 -3183. https://doi.org/10.1149/1.1838783
  24. Ishihara,T., Kudo,T., Matsuda,H.and Takita, Y.(1994) Doped perovskite oxide, PrMnO3, as a new cathode for solid-oxide fuel cells that decrease the operating temperature. Journal of American Ceramic Society,77,1682 -1684. https://doi.org/10.1111/j.1151-2916.1994.tb09779.x
  25. Ishihara,T., Kudo,T., Matsuda,H.and Takita,Y.(1995) Doped PrMnO3Perovskite Oxide as a new cathode of solid oxide fuel cells for low temperature operation. Journal Electrochemical Society,142, 1519 -1524. https://doi.org/10.1149/1.2048606
  26. Ishihara,T., Matsuda,H.and Takita,Y.(1994) Doped LaGaO3perovskite type oxide as a new oxide ionic conductor. Journal of American Chemical Society,116, 3801 -3803. Jiang,S.P.(2002) A comparison of O2reduction reactions on porous (La,Sr)MnO3and (La,Sr)(Co,Fe)O3electrodes. Solid State Ionics,146, 1-22. https://doi.org/10.1021/ja00088a016
  27. Jiang,S.P., Love,J.G.and Ramprakash,Y.(2002) Electrode behaviour at (La,Sr)MnO3/Y2O3-ZrO2interface by electrochemical impedance spectroscopy. Journal of Power Sources,110,201 -208. https://doi.org/10.1016/S0378-7753(02)00259-8
  28. Jinhua, P., Sun, K., Zhang, N., Chen, X., Xu, S.andZhou, D. (2007) Preparation and characterization of Pr1-xSrxFeO3cathode material for intermediate temperature solid oxide fuel cells. Journal of Power Sources,172, 633-640. https://doi.org/10.1016/j.jpowsour.2007.05.023
  29. Kamruddin,M., Ajitkumar,P.K., Nithya,R., Tyagi,A.K.and Raj,B.(2004) Synthesis of nanocrystaline ceria by thermal decomposition and soft-chemistry methods. Scripta Materialia, 50 ,417 -422. https://doi.org/10.1016/j.scriptamat.2003.11.010
  30. Kenjo,T.and Nishiya,M.(1992) LaMnO3air cathodes containing ZrO2electrolyte for high temperature solid oxide fuel cells. Solid State Ionics, 57,295 -302. https://doi.org/10.1016/0167-2738(92)90161-H
  31. Kesapragada,S.V., Bhaduri,S.B., Bhaduri,S.and Singh,P.(2003) Densification of LSGM electrolytes using activated microwave sintering. Journal of Power Sources, 124, 499 -504. https://doi.org/10.1016/j.jpowsour.2003.06.002
  32. Ketzial, J.J.and Nesaraj, A.S.(2010) Preparation of nano-ceramic composite electrolyte materials for low temperature solid oxide fuel cell application. International Journal of Nanoscience and Nanotechnology,6, 179 -190
  33. Kharlamova, T.,Smirnova, A.,Sadykov, V.,Zarubina,V., Krieger, T., Batuev, L.,Ishchenko,A., Salanov, A.andUvarov,N. (2008) Intermediate temperature solid oxide fuel cells based on nano-composite cathode structures. ECS Transactions,13,275 -284. https://doi.org/10.1149/1.3050399
  34. Kilbride,P.(1996) Preparation and properties of small diametertubular solid oxide fuel cells for rapid start-up. Journal of Power Sources,61, 167 -171. https://doi.org/10.1016/S0378-7753(96)02362-2
  35. Kumar.M., Nesaraj,A.S., Arul Raj,I.and Pattabiraman,R.(2004) Synthesis and characterization of La0.9Sr0.1Ga0.8Mg0.2O3-δelectrolyte for Intermediate Temperature Solid Oxide Fuel Cells. Ionics,10, 93 -98. https://doi.org/10.1007/BF02410313
  36. Kuščer, D., Holc, J., Hrovat, M., Bernik, S., Samardžija Z. and Kolar, D.(1995) Interactions between a thick film LaMnO3cathode and YSZ SOFC electrolyte during high temperature ageing. Solid State Ionics,78, 79 -85. https://doi.org/10.1016/0167-2738(95)00010-4
  37. Lee, J.H., Kim,K.M.,Son, J.W.,Kim,J.S.,Kim, B.K., Lee, H.W.and Moon, J.H.(2012) An investigation of the interfacial stability between the anode and electrolyte layer of LSGM-based SOFCs. Journal of Materials Science and Engineering,42,1866 -1871. https://doi.org/10.1007/s10853-006-1315-x
  38. Liu, W., Liu,Y.,Li, B., Sparks, T.D., Wei, X.and Pan, W.(2010) Ceria (Sm3+, Nd3+) / carbonates composite electrolytes with high electrical conductivity at low temperature. Composites Science and Technology,70, 181-185. https://doi.org/10.1016/j.compscitech.2009.10.006
  39. Lokurlu, A., Grube, T., Hohlein, B.and Stolten, D. (2003) Fuel cells for mobile and stationery applications -cost analysis for combined heat and power stations on the basis of fuel cells. International Journal of Hydrogen Energy,28, 703-711. https://doi.org/10.1016/S0360-3199(02)00242-2
  40. Lu,X.C.andZhu,J.H.(2008) Effect of Sr and Mg Doping on the property and performance of the La1 − xSrxGa1 − yMgyO3 − δElectrolyte. Journal of Electrochemical Society,155, B494-B503. https://doi.org/10.1149/1.2895064
  41. Matović,B., Bošković, S., Živković, L., Vlajić,M.D.andKrstić, V.D.(2005) Lattice parameters of Gd-doped ceria electrolytes. Materials Science Forum,494, 175 -180. https://doi.org/10.4028/www.scientific.net/MSF.494.175
  42. Meng,X.W., Lu,S.Q., Wei,T.and Zhang,Y.L.(2008) Characterization of Pr1-xSrxCo0.8Fe0.2O3-δ(0.2≤x≤0.6) cathode materials for intermediate-temperature solid oxide fuel cells. Journal of Power Sources,183,581 -585. https://doi.org/10.1016/j.jpowsour.2008.05.052
  43. Menzler,N.H., Tietz, FandUhlenbruck, S. (2010) Materials and manufacturing technologies for solid oxide fuel cells. Journal of Materials Science,45, 3109-3135. https://doi.org/10.1007/s10853-010-4279-9
  44. Mogensen,M., Sammes,N.M.andTompsett,G.A.(2000) Physical, chemical and electrochemicalproperties of pure and doped ceria. Solid State Ionics,129, 63 -94. https://doi.org/10.1016/S0167-2738(99)00318-5
  45. Nesaraj,A.S.(2010) Recent developments in solid oxide fuel cell technology -A review. Journal of Scientific and Industrial Research 69:169 -176
  46. Nesaraj,A.S., Arul Raj,I.andPattabiraman,R.(2007) Synthesis and characterization of LaCoO3based cathode and its chemical compatibility with CeO2based electrolyte in intermediate temperature solid oxide fuel cells (ITSOFC). Indian Journal of Chemical Technology,14, 154 -160
  47. Nesaraj, A.S., Arul Raj, I. and Pattabiraman, R.(2010) Preparation and characterization of ceria based electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFC). Journal of Iranian Chemical Society,7, 564 -584. https://doi.org/10.1007/BF03246044
  48. Nomura,K., Mizutani,Y., Kawai,M., Nakamura,Y.andYamamoto,O.(2000) Aging and Raman scattering study of scandia and yttria doped zirconia. Solid State Ionics,132,235 -239. https://doi.org/10.1016/S0167-2738(00)00648-2
  49. Ormerod,R.M.(1999) Internal reforming in solid oxide fuel cells. Studies in Surface Science and Catalysis,22, 35 -46. https://doi.org/10.1016/S0167-2991(99)80131-1
  50. Park,S.,Gorte, R.J.andVohs, J.M.(2000) Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell. Applied Catalysis A: General,200,55-61. https://doi.org/10.1016/S0926-860X(00)00650-5
  51. Patrakeev,M.V.,Bahteeva,J.A., Mitberg,E.B., Leonidov,I.A., Kozhevnikov,V.L.andPoeppelmeier,K.R.(2003) Electron/hole and ion transport in La1-xSrxFeO3-δ. Journal of Solid State Chemistry,172, 219 -231. https://doi.org/10.1016/S0022-4596(03)00040-9
  52. Petric,A., Huang,P.andTietz,F.(2000) Evaluation of La-Sr-Co-Fe-O perovskite for solid oxide fuel cells and gas separation membranes. Solid State Ionics,135, 719 -725. https://doi.org/10.1016/S0167-2738(00)00394-5
  53. Pomfret,M.B.,Steinhurst, D.A.andOwrutsky, J.C.(2011) Methanol and ethanol fuels in solid oxide fuel cells: A thermal imaging study of carbon deposition. Energy Fuels, 25,2633-2642. https://doi.org/10.1021/ef2003975
  54. Ralph,J.M., Rossignol,C.andKumar,R.(2003) Cathode materials for reduced-temperature SOFCs. Journal of Electrochemical Society,150, A 1518 -A 1522. https://doi.org/10.1149/1.1617300
  55. Ralph,J.M., Schoeler,A.C.andKrumpelt,M.(2001) Materials for lowertemperature solid oxide fuel cells. Journal of Materials Science,36, 1161 -1172. https://doi.org/10.1023/A:1004881825710
  56. Rambabu,B., Ghosh, S., Zhao, W.andJena, H.(2006) Innovative processing of dense LSGMelectrolytes for IT-SOFCs. Journal of Power Sources,159, 21 -28. https://doi.org/10.1016/j.jpowsour.2006.04.107
  57. Rampon R, TomaFL, BertrandG and Coddet C (2006) Liquid plasma sprayed coatings of yttria-stabilized zirconia for SOFC electrolytes. Journal of Thermal Spray Technology 15: 682-688. https://doi.org/10.1361/105996306X146712
  58. Raza,R., Abbas,G., Liu,Q., Patel,I.andZhu,B.(2012) La0.3Sr0.2Mn0.1Zn0.4oxide-Sm0.2Ce0.8O1.9(LSMZ-SDC) nanocomposite cathode for low temperature SOFCs. Journal of Nanoscience and Nanotechnology,12,4994-4997. https://doi.org/10.1166/jnn.2012.4938
  59. Raza,R.,Fransson,T.andZhu, B.(2010) Zn0.6Fe0.1Cu0.3/GDC composite anode for low temperature SOFC (300-600)°C. Journal of Fuel Cell Science and Technology, 8,031010 -031014. https://doi.org/10.1115/1.4002904
  60. Raza,R., Gao,Z., Singh,T., Singh,G., Li,S.andZhu,B.(2011) LiAlO2-LiNaCO3composite electrolyte for solid oxide fuel cells. Journal of Nanoscience and Nanotechnology,11,5402 -5407. https://doi.org/10.1166/jnn.2011.3784
  61. Raza, R., Liu,Q.,Nisar, J., Wang, X., Ma, Y.andZhu, B.(2011). ZnO/NiO nanocomposite electrode for low temperature solid oxide fuel cells. Electrochemistry Communication,13, 917-920. https://doi.org/10.1016/j.elecom.2011.05.032
  62. Ruiz-morales,J.C., Canales-vázquez,J., Lincke,H., Peña-martínez,J., Marrero-lópez,D., Pérez-coll,D., Irvine,J.T.S. and Núñez,P.(2008) Potential electrode materials for symmetrical solid oxide fuel cells. Boletin de la Sociedad Española de Cerámica y Vidrio,47, 183 -188. https://doi.org/10.3989/cyv.2008.v47.i4.172
  63. Simner, S.P., Bonnett, J.F., Canfield, N.L., Meinhardt,K.D., Sprinkle, V.L.andStevenson,J.W.(2002) Optimized lanathanum ferrite-based cathodes for anode-supported SOFCs. Electrochemical and Solid-State Letters,5,A173-A175. https://doi.org/10.1149/1.1483156
  64. SimnerSP, SheltonJP, AndersonMD and Stevenson JW (2003) Interaction between La(Sr)FeO3SOFC cathode and YSZ electrolyte. Solid State Ionics 161:11 -18. Singhal,S.C.andMizusaki,J.(2005) Solid oxide fuel cells-IX (The Electrochemical Society, Inc, New Jersey), Pennington, NJ, USA.Slater, https://doi.org/10.1016/S0167-2738(03)00158-9
  65. P.R.andIrvine,J.T.S.(1999) Niobium based tetragonal tungsten bronzes as potential anodes for solid oxide fuel cells: synthesis and electrical characterization. Solid State Ionics,120,125 -134. https://doi.org/10.1016/S0167-2738(99)00020-X
  66. Steele,B.C.H.(1996) Survey of materials selection for ceramic fuel cells II. Cathodes and anodes. Solid State Ionics,86 -88, 1223 -1234. Steele, B.C.H.(2000) Appraisal of CGO electrolytes for IT-SOFC operating at 500 °C. Solid State Ionics,129,95-110. https://doi.org/10.1016/S0167-2738(99)00319-7
  67. Steele,B.C.H.(2001) Materials science and engineering: The enablingtechnology for the commercialization of fuel cell systems. Journal of Materials Science,36, 1053 -1068. https://doi.org/10.1023/A:1004853019349
  68. Sun, C., Hui, R.and Roller, J.(2010) Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry,14, 1125-1144. https://doi.org/10.1007/s10008-009-0932-0
  69. Sun,C. and Stimming, U.(2007) Recent anode advances in solid oxide fuel cells, Journal of Power Sources,171, 247 -250. https://doi.org/10.1016/j.jpowsour.2007.06.086
  70. Tai,L.W., Nasrallah,M.M., Anderson,H.U., Sparlin,D.M.andSehlin,S.R.(1995) Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system. La0.8Sr0.2Co1-yFeyO3. Solid State Ionics,76, 259 -271. https://doi.org/10.1016/0167-2738(94)00244-M
  71. Taimatsu,H., Wada,K., Kaneko,H.andYamamura,H.(1992) Mechanism of reaction between lanthanum manganite and yttria-stabilized zirconia. Journal of American Ceramic Society, 75,401 -405. https://doi.org/10.1111/j.1151-2916.1992.tb08193.x
  72. Takeda,Y., Kanno,R., Noda,M.andYamamoto,O.(1986) Perovskite electrolytes for high temperature solid electrolyte fuel cells. Bulletin of the Institute for Chemical Research,64,157 -169
  73. Tao,S.andIrvine,J.T.S.(2003) A redox-stable efficient anode for solid-oxide fuel cells. Nature Materials,2, 320 -323. https://doi.org/10.1038/nmat871
  74. Tietz,F., Arul Raj,I., Zahid,M.andStöver,D.(2006) Electrical conductivity and thermal expansion of La0.8Sr0.2(Mn,Fe,Co)O3-δperovskites. Solid State Ionics,177, 1753 -1756. https://doi.org/10.1016/j.ssi.2005.12.017
  75. Tu,H.Y., Takeda,Y., Imanishi,N. andYamamoto,O.(1997) Ln1-xSrxCoO3(Ln= Sm, Dy) for the electrode of solid oxide fuel cells. Solid State Ionics,100, 283 -288. https://doi.org/10.1016/S0167-2738(97)00360-3
  76. Uhlenbruck,S., Moskalewicz,T., Jordan,N., Penkalla,H.J.andBuchkremer,H.P.(2009) Element interdiffusion at electrolyte-cathode interfaces in ceramic high-temperature fuel cells. Solid State Ionics,180, 418 -423. https://doi.org/10.1016/j.ssi.2009.01.014
  77. Ullmann,H., Trofimenko,N., Tietz,F., Stöver,D.andAhmad-Khanlou,A.(2000) Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ionics,138,79 -90. https://doi.org/10.1016/S0167-2738(00)00770-0
  78. Van Doorn,R.H.E. and Burggraff,A.J.(2000) Structural aspects of the ionic conductivity of La1-xSrxCoO3-δ. Solid State Ionics,128,65 -78. https://doi.org/10.1016/S0167-2738(99)00282-9
  79. Van Roosmalen,J.A.M. and Cordfunke,E.H.P.(1992) Chemical reactivity and interdiffusion of (La,Sr)MnO3and (Zr,Y)O2solid oxide fuel cell cathode and electrolyte materials. Solid State Ionics,52, 303-312. https://doi.org/10.1016/0167-2738(92)90177-Q
  80. Wang, Y., Mori, T., Drennan,J., Li,J.G.andYajima,Y.(2004) Low-temperature synthesis of 10 mol% Gd2O3-doped CeO2ceramics and its characterization.Journal of Ceramic Society of Japan, 112, S 41 -S 45
  81. Wang,Y., Mori,R., Li,J.G. and Yajima,Y.(2003) Low temperature fabrication and electrical property of 10 mol% Sm2O3-doped CeO2ceramics. Science and Technology of Advanced Materials,4, 229 -238. https://doi.org/10.1016/S1468-6996(03)00051-2
  82. Wiik,K., Schmidt,C.R., Faaland,S., Shamsili,S., Einarsrud,M.A.and Grande,T.(1999) Reactions between strontium-substituted lanthanum manganite and yttria stabilized zirconia. I. Powder samples. Journal of American Ceramic Society, 82, 721 -728. https://doi.org/10.1111/j.1151-2916.1999.tb01823.x
  83. Yamamoto, O.(2000) Solid oxide fuel cells: fundamental aspects and prospects. Electrochimica Acta,45, 2423 -2435. Yamamoto,O., Takeda,Y., Kanno,R. andNoda,M.(1987) Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells.Solid State Ionics, 22,241 -246. https://doi.org/10.1016/0167-2738(87)90039-7
  84. Yan, S., Almeida Veronica Alexandra, B. and Françoi, G.(2011) Preparation of nanocomposite GDC/LSCF cathode material for IT-SOFC by induction plasma spraying. Journal of Thermal Spray Technology, 20, 145 -153. https://doi.org/10.1007/s11666-010-9583-z
  85. Yang Nai-Tao, Meng Xiu-Xia, Tan Xiao-Yao and Li Zheng-Min. (2006) Anode of intermediate temperature solid oxide fuel cells. Journal of Inorganic Materials 21: 409-414
  86. Yasumoto, K., Inagaki,Y., Shiono,M. and Dokiya,M.(2002) An (La,Sr)(Co,Cu)O3-δcathode for reduced temperature SOFCs. Solid State Ionics,148, 545 -549. https://doi.org/10.1016/S0167-2738(02)00115-7
  87. Ying, Ma.(2009) Ceria-based nanocomposite electrolyte forlow temperature solid oxide fuel cells. Licentiate thesis. Rolyal Institute of Technology, Stockholm
  88. Zang, T.S.Ma, J.Chan, S.H. Hing,P. and Kilner,J.A.(2004) Intermediate temperature conductivity of ceria-based solid solutions as a function of gadolinia and silica contents. Solid State Sciences,5, 565 -572. https://doi.org/10.1016/j.solidstatesciences.2004.03.013
  89. Zhu,B.(2006) Next generation fuel cell R&D. International Journal of Energy Research,30,895-903. https://doi.org/10.1002/er.1195
  90. Zhu,C.J.Liu,X.M.Xu,D.Yan,D.T.Wang,D.Y.and Su,W.H.(2008) Preparation and performance of Pr0.7Sr0.3Co1-yCuyO3-δas cathode material of IT-SOFCs. Solid State Ionics, 179,1470 -1473. https://doi.org/10.1016/j.ssi.2008.01.031
  91. Zhu,J.H.Geng,S.J.and Ballard,D.A.(2007) Evaluation of several low thermal expansion Fe-Co-Ni alloys as interconnect for reduced-temperature solid oxide fuel cell. International Journal of Hydrogen Energy,32, 3682 -3688. https://doi.org/10.1016/j.ijhydene.2006.08.026
  92. Zhu,W.Z.and Deevi,S.C.(2003) A review on the status of anode materials for solid oxide fuel cells. Materials Science and Engineering, A 362, 228 -239. https://doi.org/10.1016/S0921-5093(03)00620-8

Last update: 2021-03-03 02:26:59

  1. Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode

    F. Heydari, A. Maghsoudipour, M. Alizadeh, Z. Khakpour, M. Javaheri. Applied Physics A, 120 (4), 2015. doi: 10.1007/s00339-015-9374-y
  2. Current state and prospects of manufacturing and operation of methane-based fuel cells (review)

    A. A. Ponomareva, A. G. Ivanova, O. A. Shilova, I. Yu. Kruchinina. Glass Physics and Chemistry, 42 (1), 2016. doi: 10.1134/S1087659616010120
  3. Review: Enhancement of composite anode materials for low-temperature solid oxide fuels

    K.H. Ng, H.A. Rahman, M.R. Somalu. International Journal of Hydrogen Energy, 44 (58), 2019. doi: 10.1016/j.ijhydene.2018.11.137
  4. A simulation study on electrochemical properties of Bi-layered electrolytes GDC(Gd0.1Ce0.9O1.95)/YSZ(Y0.16Zr0.84O1.92), ESB(Er0.4Bi1.6O3)/GDC and ESB/YSZ with different layer thickness fractions in solid oxide fuel cells

    Zhentao Wang, Yanwei Zeng, Chuanming Li, Zhupeng Ye, Yuan Zhang. International Journal of Hydrogen Energy, 44 (36), 2019. doi: 10.1016/j.ijhydene.2019.06.024
  5. Synthesis and evaluation of effective parameters in thermal expansion coefficient of Ln0.6Sr0.4Co0.2M0.8O3−δ (Ln = La,Nd and M = Mn,Fe) perovskite oxide

    FATEMEH HEYDARI, AMIR MAGHSOUDIPOUR, MASOUD ALIZADEH, ZAHRA KHAKPOUR, MASOUMEH JAVAHERI. Bulletin of Materials Science, 38 (4), 2015. doi: 10.1007/s12034-015-0942-8
  6. WITHDRAWN: Review: Enhancement of composite anode materials for low-temperature solid oxide fuels

    K.H. Ng, H.A. Rahman, M.R. Somalu. International Journal of Hydrogen Energy, 2018. doi: 10.1016/j.ijhydene.2018.01.073
  7. Nanostructured BaCo0.4Fe0.4Zr0.1Y0.1O3-δ Cathodes with Different Microstructural Architectures

    Nanomaterials, 10 (6), 2020. doi: 10.3390/nano10061055
  8. Improved electrochemical performance and durability of butane‐operating low‐temperature solid oxide fuel cell through palladium infiltration

    International Journal of Energy Research, 44 (13), 2020. doi: 10.1002/er.5547
  9. Impact of Mn4+ ion substitution on La0.4Sr0.6Fe1-xMnxO3 perovskite conductivity (x = 0.2, 0.4 and 0.6) as a solid fuel cell cathode

    Y E Gunanto, M P Izaak, H Sitompul, W A Adi. Journal of Physics: Conference Series, 127 , 2021. doi: 10.1088/1742-6596/1751/1/012066

Last update: 2021-03-03 02:26:59

No citation recorded.