Capital and operating cost estimates for converting microalgae to oil or biodiesel are compared. These cost comparisons are based on Australian locations, which are expected to fall at the lower end of the cost spectrum in the Asia-Pacific Region and other parts of the world. It is assumed that microalgae are grown in a concentrated saltwater medium in raceway ponds, then are harvested, dewatered and the oil is extracted and converted to biodiesel by transesterification. The size of the desired pond system affects the number of potential locations due to constraints in resource availability. Cost estimates vary significantly due to differences in the assumed oil productivity, the harvesting equipment and the method of converting residual biomass to electric power. A comparison is made with recent cost estimates from other parts of the world, in which the expected costs of microalgae oil production from a number of publicly available sources lay between 0.34–31.0 USD/L. The resulting cost estimates of between 1.37—2.66 USD/L are at the lower end of this scale, thereby confirming that Australia has the potential to be a low-cost producer of algal oil and biodiesel in the Asia-Pacific Region. It was significant that, despite similar assumptions for the microalgae-to-oil process, cost estimates for the final biodiesel or oil price differed by a factor of 2. This highlights the high degree of uncertainty in such economic predictions.
Article Metrics:
Last update:
Measuring the regional availability of biomass for biofuels and the potential for microalgae
Jana Kosinkova, Amar Doshi, Juliette Maire, Zoran Ristovski, Richard Brown, Thomas J. Rainey. Renewable and Sustainable Energy Reviews, 49 , 2015. doi: 10.1016/j.rser.2015.04.084Microalgae biomass conversion into biofuel using modified HZSM-5 zeolite catalyst: A review
Mustafa Jawad Nuhma, Hajar Alias, Muhammad Tahir, Ali A. Jazie. Materials Today: Proceedings, 42 , 2021. doi: 10.1016/j.matpr.2020.12.320Life Cycle Sustainability Assessment (LCSA)
Murilo Pagotto, Anthony Halog, Diogo Fleury Azevedo Costa, Tianchu Lu. Environmental Footprints and Eco-design of Products and Processes, 2021. doi: 10.1007/978-981-16-4562-4_7Challenges and prospects for sustainable microalga-based oil: A comprehensive review, with a focus on metabolic and genetic engineering
Saeed Ranjbar, F. Xavier Malcata. Fuel, 324 , 2022. doi: 10.1016/j.fuel.2022.124567Bioproduct Potential of Outdoor Cultures of Tolypothrix sp.: Effect of Carbon Dioxide and Metal-Rich Wastewater
Chinnathambi Velu, Samuel Cirés, Diane L. Brinkman, Kirsten Heimann. Frontiers in Bioengineering and Biotechnology, 8 , 2020. doi: 10.3389/fbioe.2020.00051Selenastrum Capricornutum a New Strain of Algae for Biodiesel Production
Annarita Pugliese, Lorenzo Biondi, Pietro Bartocci, Francesco Fantozzi. Fermentation, 6 (2), 2020. doi: 10.3390/fermentation6020046Renewable biofuels from microalgae: technical advances, limitations and economics
Subhisha Raj, Amrutha Sajith, Arathi Sreenikethanam, Swathi Vadlamani, Aiswarya Satheesh, Anurup Ganguly, J. Rajesh Banu, Sunita Varjani, Poornachandar Gugulothu, Amit K. Bajhaiya. Environmental Technology Reviews, 12 (1), 2023. doi: 10.1080/21622515.2023.2167126Modification of PVDF membrane for harvesting of Nannochloropsis sp. and its cleaning results
Taufik Qodar Romadiansyah, Badrut Tamam Ibnu Ali, Widi Citra Lestari, Marisa Permatasari, Dini Ermavitalini, Nurul Widiastuti. Materials Research Express, 10 (7), 2023. doi: 10.1088/2053-1591/ace02ePathway of sustainable fuel development with novel generation biofuels
Danh Chan Nguyen, Van Viet Pham. INTERNATIONAL CONFERENCE ON EMERGING APPLICATIONS IN MATERIAL SCIENCE AND TECHNOLOGY: ICEAMST 2020, 2235 , 2020. doi: 10.1063/5.0007654Life-cycle cost analysis of a hybrid algae-based biological desalination – low pressure reverse osmosis system
Li Gao, Gang Liu, Arash Zamyadi, Qilin Wang, Ming Li. Water Research, 195 , 2021. doi: 10.1016/j.watres.2021.116957Last update: 2025-04-02 23:05:13
Measuring the regional availability of biomass for biofuels and the potential for microalgae
Jana Kosinkova, Amar Doshi, Juliette Maire, Zoran Ristovski, Richard Brown, Thomas J. Rainey. Renewable and Sustainable Energy Reviews, 49 , 2015. doi: 10.1016/j.rser.2015.04.084Pathways of processing of wet microalgae for liquid fuel production: A critical review
Chaudry S.. Renewable and Sustainable Energy Reviews, 52 , 2015. doi: 10.1016/j.rser.2015.08.005Bioproduct Potential of Outdoor Cultures of Tolypothrix sp.: Effect of Carbon Dioxide and Metal-Rich Wastewater
Chinnathambi Velu, Samuel Cirés, Diane L. Brinkman, Kirsten Heimann. Frontiers in Bioengineering and Biotechnology, 8 , 2020. doi: 10.3389/fbioe.2020.00051Selenastrum Capricornutum a New Strain of Algae for Biodiesel Production
Annarita Pugliese, Lorenzo Biondi, Pietro Bartocci, Francesco Fantozzi. Fermentation, 6 (2), 2020. doi: 10.3390/fermentation6020046This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.