The Costs of Producing Biodiesel from Microalgae in the Asia-Pacific Region


Capital and operating cost estimates for converting microalgae to oil or biodiesel are compared. These cost comparisons are based on Australian locations, which are expected to fall at the lower end of the cost spectrum in the Asia-Pacific Region and other parts of the world. It is assumed that microalgae are grown in a concentrated saltwater medium in raceway ponds, then are harvested, dewatered and the oil is extracted and converted to biodiesel by transesterification. The size of the desired pond system affects the number of potential locations due to constraints in resource availability. Cost estimates vary significantly due to differences in the assumed oil productivity, the harvesting equipment and the method of converting residual biomass to electric power. A comparison is made with recent cost estimates from other parts of the world, in which the expected costs of microalgae oil production from a number of publicly available sources lay between 0.34–31.0 USD/L. The resulting cost estimates of between 1.37—2.66 USD/L are at the lower end of this scale, thereby confirming that Australia has the potential to be a low-cost producer of algal oil and biodiesel in the Asia-Pacific Region. It was significant that, despite similar assumptions for the microalgae-to-oil process, cost estimates for the final biodiesel or oil price differed by a factor of 2. This highlights the high degree of uncertainty in such economic predictions.
Article Metrics:
- Alabi, O.A.; Tampier, M; Bibeau, E. (2009) Microalgae technologies and processes for biofuels/bioenergy production in British Columbia: Current technology. suitability and barriers to production. Final report: British Columbia Innovation Council, 63p
- Batten, D.F., Campbell, P.K., Threlfall, G. (2011) Resource Potential of Algae for Sustainable Biodiesel Production in the APEC Economies. Report prepared for the APEC Energy Working Group under EWG 18/2009, Document no. APEC#211-RE-01.9, 35 p. (can be downloaded at http://www.egnret.ewg.apec.org /reports/index.html)
- Benemann, J.R.; Goebel, R.P.; Weissman, J.C.; Augenstein, D.C. (1982) Microalgae as a source of liquid fuels. Final Report, U.S. Department of Energy, 202 p
- Benemann, J.R; Oswald, W.J (1996). Systems and Economic Analysis of Microalgae Ponds for Conversion of CO2 to Biomass. Final Report, Pittsburgh Energy Technology Center
- Campbell, P.K; Beer, T.; Batten, D. (2008) Greenhouse Gas Sequestration by Algae – energy and greenhouse gas life cycle studies. in Proc. 6th Australian Life-Cycle Assessment Conference, Melbourne
- Campbell, P.K., Beer, T and Batten, D. (2011) Life Cycle Assessment of Biodiesel Production from Microalgae in Ponds. Bioresource Technology, 102, 50-56: doi: 10.1016/j.biortech.2010.06.048
- Griffin, G.J; Batten D.F. (2009) The Economics of Producing Biodiesel from Micro-Algae in Australia. Proceedings of Bioenergy Australia conference, 8-10 December 2009, Gold Coast, Queensland, Australia
- Haas, M.J., McAloon, A.J., Yee, W.C., Foglia, T.A. (2006) A process model to estimate biodiesel production costs. Bioresourse Technology, 97, 671-678
- Mohn, F.H. (1988) Harvesting of micro-algal biomass. in Borowitzka, M.A. & Borowitzka, L.J. (eds), Micro-algal biotechnology, Cambridge University Press, Cambridge, Chapter 15
- Pienkos, P. Historical Overview of Algal Biofuel Technoeconomic Analyses. DOE Algal BiofuelsWorkshop, University of Maryland, December 2008, http://purl.access.gpo.gov/GPO/LPS117182. Accessed on July 2010
- Regan, D.L; Gartside, G. (1983) Liquid Fuels from Micro-Algae in Australia, (CSIRO, Melbourne, 1983)
- Stephens, E., Ross, I.L., King, Z., Mussgnug, J.H., Kruse, O., Posten, C., Borowitzka M.A., Hankamer, B., 2010. An economic and technical evaluation of microalgal biofuels. Nature Biotechnology, 28, 126-128
- Van Harmelen, T. & Oonk, H. (2006) Microalgae Biofixation Processes: Some Applications and Potential Contributions to Greenhouse Gas Mitigation Options. Report prepared for the International Network on Biofixation of CO2 and Greenhouse Gas Abatement with Microalgae, TNO, Apeldoorn, 45p
- USDoE (2009) National Algal Biofuels Technology Roadmap. US Department of Energy Biomass Program
- Weismann, J.C. &Goebel, R.P (1987) Design and Analysis of Pond Systems for the Purpose of Producing Fuels. Final Report, Solar Energy Research Institute., Golden, CO, SERI/STR-231-2840
Last update: 2021-03-01 18:03:00
-
Measuring the regional availability of biomass for biofuels and the potential for microalgae
Renewable and Sustainable Energy Reviews, 49 , 2015. doi: 10.1016/j.rser.2015.04.084 -
Microalgae biomass conversion into biofuel using modified HZSM-5 zeolite catalyst: A review
Mustafa Jawad Nuhma, Hajar Alias, Muhammad Tahir, Ali A. Jazie. Materials Today: Proceedings, 2021. doi: 10.1016/j.matpr.2020.12.320 -
Bioproduct Potential of Outdoor Cultures of Tolypothrix sp.: Effect of Carbon Dioxide and Metal-Rich Wastewater
Chinnathambi Velu, Samuel Cirés, Diane L. Brinkman, Kirsten Heimann. Frontiers in Bioengineering and Biotechnology, 8 , 2020. doi: 10.3389/fbioe.2020.00051 -
Selenastrum Capricornutum a New Strain of Algae for Biodiesel Production
Annarita Pugliese, Lorenzo Biondi, Pietro Bartocci, Francesco Fantozzi. Fermentation, 6 (2), 2020. doi: 10.3390/fermentation6020046 -
Pathway of sustainable fuel development with novel generation biofuels
Danh Chan Nguyen, Van Viet Pham. INTERNATIONAL CONFERENCE ON EMERGING APPLICATIONS IN MATERIAL SCIENCE AND TECHNOLOGY: ICEAMST 2020, 127 , 2020. doi: 10.1063/5.0007654 -
Life-cycle cost analysis of a hybrid algae-based biological desalination – low pressure reverse osmosis system
Li Gao, Gang Liu, Arash Zamyadi, Qilin Wang, Ming Li. Water Research, 2021. doi: 10.1016/j.watres.2021.116957
Last update: 2021-03-01 18:03:01
-
Measuring the regional availability of biomass for biofuels and the potential for microalgae
Renewable and Sustainable Energy Reviews, 49 , 2015. doi: 10.1016/j.rser.2015.04.084 -
Pathways of processing of wet microalgae for liquid fuel production: A critical review
Chaudry S.. Renewable and Sustainable Energy Reviews, 52 , 2015. doi: 10.1016/j.rser.2015.08.005 -
Bioproduct Potential of Outdoor Cultures of Tolypothrix sp.: Effect of Carbon Dioxide and Metal-Rich Wastewater
Chinnathambi Velu, Samuel Cirés, Diane L. Brinkman, Kirsten Heimann. Frontiers in Bioengineering and Biotechnology, 8 , 2020. doi: 10.3389/fbioe.2020.00051 -
Selenastrum Capricornutum a New Strain of Algae for Biodiesel Production
Annarita Pugliese, Lorenzo Biondi, Pietro Bartocci, Francesco Fantozzi. Fermentation, 6 (2), 2020. doi: 10.3390/fermentation6020046

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.