skip to main content

Development of BiOBr/TiO2 nanotubes electrode for conversion of nitrogen to ammonia in a tandem photoelectrochemical cell under visible light

Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Indonesia

Received: 29 Dec 2022; Revised: 26 Mar 2023; Accepted: 27 May 2023; Available online: 23 Jun 2023; Published: 15 Jul 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Ammonia (NH3) is one of the important chemicals for human life. The demand for ammonia is expected to increase every year. Conventionally, the fixation process of N2 to produce NH3 in the industrial sector is carried out through the Haber−Bosch process, which requires extreme temperature and pressure conditions that consume a high amount of energy and emit a considerable amount of CO2. Therefore, it is necessary to develop alternative technology to produce ammonia using environmentally friendly methods. Many studies have developed the photo-electrochemical conversion of nitrogen to ammonia in the presence of semiconductor materials, but the resulting efficiency is still not as expected. In this research, the development of the tandem system of Dye-Sensitized Solar Cell - Photoelectrochemistry (DSSC - PEC) was carried out for the conversion of nitrogen to ammonia. The DSSC cell was prepared using N719/TiO2 nanotubes as photoanode, Pt/FTO as cathode, and electrolyte I-/I3-. The DSSC efficiency produced in this research was 1.49%. PEC cell at the cathode and anode were prepared using BiOBr/TiO2 nanotubes synthesized by the SILAR (Successive Ionic Layer Adsorption and Reaction) method. The resulting ammonia levels were analyzed using the phenate method. In this study, ammonia levels were obtained at 0.1272 µmol for 6 hours of irradiation with an SCC (Solar to Chemical Conversion) percentage of 0.0021%.

Fulltext View|Download
Keywords: Ammonia; BiOBr/TiO2 nanotubes; DSSC; nitrogen fixation; photo-electrochemistry
Funding: Ministry of Education, Culture, Research, and Technology under contract 987/UN2.RST/HKP.05.00/2022

Article Metrics:

  1. Alkorbi, A. S., Muhammad Asif Javed, H., Hussain, S., Latif, S., Mahr, M. S., Mustafa, M. S., Alsaiari, R., & Alhemiary, N. A. (2022). Solar light-driven photocatalytic degradation of methyl blue by carbon-doped TiO2 nanoparticles. Optical Materials, 127, 112259. https://doi.org/10.1016/j.optmat.2022.112259
  2. An’Nur, F. K., Wihelmina, B. V., Gunlazuardi, J., & Wibowo, R. (2020). Tandem system of dyes sensitized solar cell-photo electro chemical (DSSC-PEC) employing TiO2 nanotube/BiOBr as dark cathode for nitrogen fixation. AIP Conference Proceedings, 2243(June 2020). https://doi.org/10.1063/5.0001100
  3. Boda, M. A., & Shah, M. A. (2017). Fabrication mechanism of compact TiO2 nanotubes and their photo-electrochemical ability. Materials Research Express, 4(7). https://doi.org/10.1088/2053-1591/aa7cd2
  4. Broens, M. I., Ramos Cervantes, W., Asenjo Collao, A. M., Iglesias, R. A., Teijelo, M. L., & Linarez Pérez, O. E. (2023). TiO2 nanotube arrays grown in ethylene glycol-based media containing fluoride: Understanding the effect of early anodization stages on the morphology. Journal of Electroanalytical Chemistry, 935, 117314. https://doi.org/10.1016/j.jelechem.2023.117314
  5. Chougala, L. S., Yatnatti, M. S., Linganagoudar, R. K., Kamble, R. R., & Kadadevarmath, J. S. (2017). A simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells. Journal of Nano- and Electronic Physics, 9(4). https://doi.org/10.21272/jnep.9(4).04005
  6. Fang, D., Luo, Z., Huang, K., & Lagoudas, D. C. (2011). Effect of heat treatment on morphology, crystalline structure and photocatalysis properties of TiO 2 nanotubes on Ti substrate and freestanding membrane. Applied Surface Science, 257(15), 6451–6461. https://doi.org/10.1016/j.apsusc.2011.02.037
  7. Feng, J., Zhang, X., Zhang, G., Li, J., Song, W., & Xu, Z. (2021). Improved photocatalytic conversion of high−concentration ammonia in water by low−cost Cu/TiO2 and its mechanism study. Chemosphere, 274. https://doi.org/10.1016/j.chemosphere.2021.129689
  8. Garzon-Roman, A., Zuñiga-Islas, C., & Quiroga-González, E. (2020). Immobilization of doped TiO2 nanostructures with Cu or In inside of macroporous silicon using the solvothermal method: Morphological, structural, optical and functional properties. Ceramics International, 46(1), 1137–1147. https://doi.org/10.1016/j.ceramint.2019.09.082
  9. Gu, P., Yang, D., Zhu, X., Sun, H., Wangyang, P., Li, J., & Tian, H. (2017). Influence of electrolyte proportion on the performance of dye-sensitized solar cells. AIP Advances, 7(10). https://doi.org/10.1063/1.5000564
  10. Hirakawa, H., Hashimoto, M., Shiraishi, Y., & Hirai, T. (2017). Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide. Journal of the American Chemical Society, 139(31), 10929–10936. https://doi.org/10.1021/jacs.7b06634
  11. Hoang, N. T.-T., Tran, A. T.-K., Le, T.-A., & Nguyen, D. D. (2021). Enhancing efficiency and photocatalytic activity of TiO2-SiO2 by combination of glycerol for MO degradation in continuous reactor under solar irradiation. Journal of Environmental Chemical Engineering, 9(5), 105789. https://doi.org/10.1016/j.jece.2021.105789
  12. Huang, R., Li, X., Gao, W., Zhang, X., Liang, S., & Luo, M. (2021). Recent advances in photocatalytic nitrogen fixation: From active sites to ammonia quantification methods. RSC Advances, 11(24), 14844–14861. https://doi.org/10.1039/d0ra10439f
  13. Humayun, M., Raziq, F., Khan, A., & Luo, W. (2018). Modification strategies of TiO2 for potential applications in photocatalysis: A critical review. Green Chemistry Letters and Reviews, 11(2), 86–102. https://doi.org/10.1080/17518253.2018.1440324
  14. Indira, K., Mudali, U. K., Nishimura, T., & Rajendran, N. (2015). A Review on TiO2 Nanotubes: Influence of Anodization Parameters, Formation Mechanism, Properties, Corrosion Behavior, and Biomedical Applications. Journal of Bio- and Tribo-Corrosion, 1(4), 1–22. https://doi.org/10.1007/s40735-015-0024-x
  15. Jia, L., Tan, X., Yu, T., & Zhang, Z. (2018). Enhanced photoelectrocatalytic performance of temperature-dependent 2D/1D BiOBr/TiO2-x nanotubes. Materials Research Bulletin, 105, 322–329. https://doi.org/10.1016/j.materresbull.2018.05.005
  16. Lan, M., Zheng, N., Dong, X., Ma, H., & Zhang, X. (2021). One-step in-situ synthesis of Bi-decorated BiOBr microspheres with abundant oxygen vacancies for enhanced photocatalytic nitrogen fixation properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 623, 126744. https://doi.org/10.1016/j.colsurfa.2021.126744
  17. Landi, S., Segundo, I. R., Afonso, C., Lima, O., Costa, M. F. M., Freitas, E., & Carneiro, J. (2022). Evaluation of band gap energy of TiO2 precipitated from titanium sulphate. Physica B: Condensed Matter, 639, 10–13. https://doi.org/10.1016/j.physb.2022.414008
  18. Li, H., Shang, J., Ai, Z., & Zhang, L. (2015). Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} Facets. Journal of the American Chemical Society, 137(19), 6393–6399. https://doi.org/10.1021/jacs.5b03105
  19. Ma, B., Xin, S., Xin, Y., Ma, X., Zhang, C., & Gao, M. (2021). Optimized fabrication of BiOBr/TiO2nanotube arrays for efficient degradation of organic pollutant under visible light irradiation. Journal of Environmental Chemical Engineering, 9(2), 104833. https://doi.org/10.1016/j.jece.2020.104833
  20. Mera, A. C., Rodríguez, C. A., Valdés, H., Jaramillo, A. F., Rojas, D., & Meléndrez, M. F. (2018). Solvothermal synthesis and photocatalytic activity of BiOBr microspheres with hierarchical morphologies. Acta Chimica Slovenica, 65(2), 429–437. https://doi.org/10.17344/acsi.2018.4181
  21. Moghni, N., Boutoumi, H., Khalaf, H., Makaoui, N., & Colón, G. (2022). Enhanced photocatalytic activity of TiO2/WO3 nanocomposite from sonochemical-microwave assisted synthesis for the photodegradation of ciprofloxacin and oxytetracycline antibiotics under UV and sunlight. Journal of Photochemistry and Photobiology A: Chemistry, 428(February). https://doi.org/10.1016/j.jphotochem.2022.113848
  22. Neetu, Maurya, I. C., Singh, S., Gupta, A. K., Srivastava, P., & Bahadur, L. (2017). N/Al-Incorporated TiO2 Nanocomposites for Improved Device Performance of a Dye-Sensitized Solar Cell. ChemistrySelect, 2(15), 4267–4276. https://doi.org/10.1002/slct.201700550
  23. Olabi, A. G., Abdelkareem, M. A., Al-Murisi, M., Shehata, N., Alami, A. H., Radwan, A., Wilberforce, T., Chae, K. J., & Sayed, E. T. (2023). Recent progress in Green Ammonia: Production, applications, assessment; barriers, and its role in achieving the sustainable development goals. Energy Conversion and Management, 277, 116594. https://doi.org/10.1016/j.enconman.2022.116594
  24. Qian, Q., Lin, Y., Xiong, Z., Su, P., Liao, D., Dai, Q., Chen, L., & Feng, D. (2022). Internal anodization of porous Ti to fabricate immobilized TiO2 nanotubes with a high specific surface area. Electrochemistry Communications, 135, 107201. https://doi.org/10.1016/j.elecom.2022.107201
  25. Qin, J., Cao, Z., Li, H., & Su, Z. (2021). Formation of anodic TiO2 nanotube arrays with ultra-small pore size. Surface and Coatings Technology, 405, 126661. https://doi.org/10.1016/j.surfcoat.2020.126661
  26. Shiraishi, Y., Hashimoto, M., Chishiro, K., Moriyama, K., Tanaka, S., & Hirai, T. (2020). Photocatalytic Dinitrogen Fixation with Water on Bismuth Oxychloride in Chloride Solutions for Solar-to-Chemical Energy Conversion. Journal of the American Chemical Society, 142(16), 7574–7583. https://doi.org/10.1021/jacs.0c01683
  27. Shiraishi, Y., Shiota, S., Kofuji, Y., Hashimoto, M., Chishiro, K., Hirakawa, H., Tanaka, S., Ichikawa, S., & Hirai, T. (2018). Nitrogen Fixation with Water on Carbon-Nitride-Based Metal-Free Photocatalysts with 0.1% Solar-to-Ammonia Energy Conversion Efficiency [Research-article]. ACS Applied Energy Materials, 1(8), 4169–4177. https://doi.org/10.1021/acsaem.8b00829
  28. Singh, R., & Dutta, S. (2018). Synthesis and characterization of solar photoactive TiO2 nanoparticles with enhanced structural and optical properties. Advanced Powder Technology, 29(2), 211–219. https://doi.org/10.1016/j.apt.2017.11.005
  29. Sreedev, P., Rakhesh, V., Roshima, N. S., & Shankar, B. (2019). Preparation of Zinc Oxide Thin films by SILAR method and its Optical analysis. Journal of Physics: Conference Series, 1172(1). https://doi.org/10.1088/1742-6596/1172/1/012024
  30. Surahman, H., Krisnandi, Y. K., & Gunlazuardi, J. (2015). Modification of Mixed Structure TiO2 Nanoporous- Nanotube Arrays with CdS Nanoparticle and Their Photoelectrochemical Properties. Jurnal Sains Materi Indonesia, 16(3), 118–125. https://jurnal.batan.go.id/index.php/jsmi/article/view/4229
  31. Wang, J., Fang, Y., Zhang, W., Yu, X., Wang, L., & Zhang, Y. (2021). TiO2/BiOBr 2D-2D heterostructure via in-situ approach for enhanced visible-light photocatalytic N2 fixation. Applied Surface Science, 567, 150623. https://doi.org/10.1016/j.apsusc.2021.150623
  32. Wang, L., Wang, S., Li, M., Yang, X., Li, F., Xu, L., & Zou, Y. (2022). Constructing oxygen vacancies and linker defects in MIL-125 @TiO2 for efficient photocatalytic nitrogen fixation. Journal of Alloys and Compounds, 909, 164751. https://doi.org/10.1016/j.jallcom.2022.164751
  33. Wang, X. J., Zhao, Y., Li, F. T., Dou, L. J., Li, Y. P., Zhao, J., & Hao, Y. J. (2016). A Chelation Strategy for In-situ Constructing Surface Oxygen Vacancy on {001} Facets Exposed BiOBr Nanosheets. Scientific Reports, 6, 1–11. https://doi.org/10.1038/srep24918
  34. Yoo, H., Kim, M., Kim, Y. T., Lee, K., & Choi, J. (2018). Catalyst-doped anodic TiO2 nanotubes: Binder-free electrodes for (photo)electrochemical reactions. Catalysts, 8(11), 1–25. https://doi.org/10.3390/catal8110555
  35. Yu, H., Li, J., Lin, Y., Wang, Z., Peng, H., Tao, H., Lai, X., & Huang, Y. (2023). BiOBr cluster spheres grown on conductive glass for a recyclable and efficient photocatalytic reactor. Materials Letters, 331, 133536. https://doi.org/10.1016/j.matlet.2022.133536
  36. Zhang, X., Yang, H., Zhang, B., Shen, Y., & Wang, M. (2016). BiOI-TiO2 Nanocomposites for Photoelectrochemical Water Splitting. Advanced Materials Interfaces, 3(1), 3–7. https://doi.org/10.1002/admi.201500273

Last update:

  1. Effect of Precursors Concentration on The Optical and Photoelectrochemical Properties of Bi₂S₃/TiO₂ Nanotubes Arrays Photoanode Synthesized by the SILAR Technique

    Eko Martin Sinaga, Muhammad Iqbal Syauqi, Jarnuzi Gunlazuardi. Jurnal Kimia Sains dan Aplikasi, 27 (6), 2024. doi: 10.14710/jksa.27.6.265-270
  2. Techno-economic comparison of ammonia production processes under various carbon tax scenarios for the economic transition from grey to blue ammonia

    Sieun Oh, Haneul Mun, Jinwoo Park, Inkyu Lee. Journal of Cleaner Production, 434 , 2024. doi: 10.1016/j.jclepro.2023.139909
  3. Crystallographic biography on nanocrystalline phase of polymorphs titanium dioxide (TiO2): A perspective static review

    Sumaiya Islam Sadia, Md. Khalid Hossain Shishir, Shanawaz Ahmed, Allah Rakha Aidid, Md. Mynul Islam, Md. Masud Rana, Sharif Md. Al-Reza, Md. Ashraful Alam. South African Journal of Chemical Engineering, 50 , 2024. doi: 10.1016/j.sajce.2024.07.005

Last update: 2024-11-20 21:34:40

No citation recorded.