skip to main content

Preparation of MgO-CaO/SiO2 catalyst from dolomite and geothermal solid waste for biodiesel production

1Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Indonesia

2Study Program of Professional Engineer, Faculty of Engineering, Diponegoro University, Indonesia

3Advanced Material Laboratory, Center Laboratory for Research and Service Unit, Diponegoro University, Indonesia

4 Department of Industrial Engineering, Faculty of Engineering, Dian Nuswantoro University, Semarang Central Java, Indonesia

5 Department of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia

View all affiliations
Received: 9 Jan 2023; Revised: 25 Mar 2023; Accepted: 10 Apr 2023; Available online: 15 Apr 2023; Published: 15 May 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Energy demand will increase along with the increase in population. The current energy demand is dominated by non-renewable energy as it could reduce dependence on fossil energy sources; hence, it is imperative to be developed. Biodiesel with waste cooking oil as its raw material is one of the renewable energies currently being developed. Catalyst can be utilized to improve the quality of biodiesel product and process. The major content in solid waste of geothermal power plant is silica oxide, while dolomite contains magnesium oxide and calcium oxide. This study aims to test the MgO-CaO/SiO2 catalyst performance from geothermal waste and dolomite in biodiesel production. The results of catalyst characterization based on FTIR, SEM, and BET tests indicates a successful impregnation method in MgO-CaO/SiO2 catalyst production. The result shows that the best variable to produce biodiesel is at the ratio of MgO-CaO: SiO2 is 15:85. The conversion of biodiesel using this variable is 92.63%. The overall results of biodiesel obtained in this study have a good quality and is in accordance with SNI 7182-2015.
Fulltext View|Download
Keywords: Catalyst of MgO-CaO/SiO2; geothermal waste; dolomite; biodiesel; waste cooking oil; catalyst characteristics

Article Metrics:

  1. Afandi, A., Riani, L., Syamsuddin, Y., & Zuhra, Z. (2022). Sintesis dan Karakterisasi Abu Kulit Alpukat sebagai Katalis Proses Transesterifikasi Minyak Goreng Bekas menjadi Biodiesel. Jurnal Serambi Engineering, 7(1). https://doi.org/10.32672/jse.v7i1.3924
  2. Ajala, E. O., Ajala, M. A., Ajao, A. O., Saka, H. B., & Oladipo, A. C. (2020). Calcium-carbide residue: A precursor for the synthesis of CaO–Al2O3–SiO2–CaSO4 solid acid catalyst for biodiesel production using waste lard. Chemical Engineering Journal Advances, 4, 100033 https://doi.org/10.1016/j.ceja.2020.100033
  3. Ala’a, H., Osman, A. I., Jamil, F., Al-Riyami, M., Al-Haj, L., Alothman, A. A., & Ponnusamy, V. K. (2020). Facile technique towards clean fuel production by upgrading waste cooking oil in the presence of a heterogeneous catalyst. Journal of King Saud University-Science, 32(8), 3410-3416. https://doi.org/10.1016/j.jksus.2020.10.001
  4. Alraddadi, S. (2020). Effects of calcination on structural properties and surface morphology of black volcanic ash. Journal of Physics Communications,4(10),105002. https://iopscience.iop.org/article/10.1088/2399-6528/abbcdc
  5. Asgari, G., Faradmal, J., Nasab, H. Z., & Ehsani, H. (2019). Catalytic ozonation of industrial textile wastewater using modified C-doped MgO eggshell membrane powder. Advanced Powder Technology, 30(7), 1297-1311. https://doi.org/10.1016/j.apt.2019.04.003
  6. Baroi, C., & Dalai, A. K. (2013). Simultaneous esterification, transesterification and chlorophyll removal from green seed canola oil using solid acid catalysts. Catalysis today, 207, 74-85. https://doi.org/10.1016/j.cattod.2012.07.003
  7. Boonphayak, P., Khansumled, S., & Yatongchai, C. (2021). Synthesis of CaO-SiO2 catalyst from lime mud and kaolin residue for biodiesel production. Materials Letters, 283, 128759. https://doi.org/10.1016/j.matlet.2020.128759
  8. Brühl, L. (2014). Fatty acid alterations in oils and fats during heating and frying. European Journal of Lipid Science and Technology, 116(6), 707-715. https://doi.org/10.1002/ejlt.201300273
  9. Buasri, A., Rochanakit, K., Wongvitvichot, W., Masa-ard, U., & Loryuenyong, V. (2015). The application of calcium oxide and magnesium oxide from natural dolomitic rock for biodiesel synthesis. Energy Procedia, 79, 562-566. https://doi.org/10.1016/j.egypro.2015.11.534
  10. Budio, S. P., Nurlina, S., Ristinah, R., Hidayat, M. T., Nuralinah, D., & Permana, A. (2014). The Effect of Dolomite as Lightweight Agregate’s Substitute To The Concrete’s Compressive Strength. Rekayasa Sipil, 7(3), 202-209. https://rekayasasipil.ub.ac.id/index.php/rs/article/view/252
  11. Corral Bobadilla, M., Lostado Lorza, R., Escribano García, R., Somovilla Gómez, F., & Vergara González, E. P. (2017). An improvement in biodiesel production from waste cooking oil by applying thought multi-response surface methodology using desirability functions. Energies, 10(1), 130. https://doi.org/10.3390/en10010130
  12. Dewajani, H., Rochmadi, Purwono, S., & Budiman, A. (2016, July). Effect of modification ZSM-5 catalyst in upgrading quality of organic liquid product derived from catalytic cracking of Indonesian nyamplung oil (Calophyllum inophyllum). In AIP Conference Proceedings (Vol. 1755, No. 1, p. 050002). AIP Publishing LLC. https://doi.org/10.1063/1.4958485
  13. Dharma, S. M. H. H., Masjuki, H. H., Ong, H. C., Sebayang, A. H., Silitonga, A. S., Kusumo, F., & Mahlia, T. M. I. (2016). Optimization of biodiesel production process for mixed Jatropha curcas–Ceiba pentandra biodiesel using response surface methodology. Energy Conversion and Management, 115, 178-190. https://doi.org/10.1016/j.enconman.2016.02.034
  14. Febriana, I., Anerasari, M., Ridwan, K. A., & Jauhari, T. (2020, April). Study of The Effect of Calcium Oxide (CaO) Catalyst Derived From Blood Clam (Anadara Granosa) And Reaction Time To Quality of Biodiesel From Waste Cooking Oil. In Journal of Physics: Conference Series, 1500(1), 012045. IOP Publishing. https://doi.org/10.1088/1742-6596/1500/1/012045
  15. Hadiyanto, H., Aini, A.P., Widayat, W., Kusmiyati, K., Budiman, A., Rosyadi, A. (2020). Multi-feedstock biodiesel production from esterification of Calophyllum inophyllum oil, castor oil, palm oil, and waste cooking oil, International Journal of Renewable Energy Development 9(1), 119–123. https://doi.org/10.14710/ijred.9.1.119-123
  16. Haryono, H., Yuliyati, Y. B., Noviyanti, A. R., Rizal, M., dan Nurjanah, S. 2020. Karakterisasi biodiesel dari minyak kemiri sunan dengan katalis heterogen silika terimpregnasi kalsium oksida (CaO/SiO2). Jurnal Penelitian Hasil Hutan. 38(1), 11-24. https://doi.org/10.20886/jphh.2020.38.1.11-24
  17. Hossain, A. S., & AlEissa, M. S. (2016). Biodiesel fuel production from palm, sunflower waste cooking oil and fish byproduct waste as renewable energy and environmental recycling process. Biotechnology Journal International, 1-9. https://doi.org/10.9734/BBJ/2016/22338
  18. Kusmiyati, K., Prasetyoko, D., Murwani, S., Widayat, W., Hadiyanto, H., Budiman, A., Roesyadi, A. (2019). Biodiesel production from reutealis trisperma oil using KOH impregnated eggshell as a heterogeneous catalyst, Energies 12(19), 3714. https://doi.org/10.3390/en12193714
  19. Kusumaningtyas, R.D., Normaliza, N., Anisa, E.D.N., Prasetiawan, H., Hartanto, D., Veny, H., Hamzah, F., Rodhi, M.N.M. (2020). Synthesis of Biodiesel via Interesterification Reaction of Calophyllum inophyllum Seed Oil and Ethyl Acetate over Lipase Catalyst: Experimental and Surface Response Methodology Analysis. Energies 15, 7737. https://doi.org/10.3390/en15207737
  20. Kusumaningtyas, R.D., Prasetiawan, H., Anggraeni, N.D., Anisa, E.D.N., Hartanto, D. (2023). Conversion of Free Fatty Acid in Calophyllum inophyllum Oil to Fatty Acid Ester as Precursor of Bio-Based Epoxy Plasticizer via SnCl2–Catalyzed Esterification. Polymers 15, 123. https://doi.org/10.3390/polym15010123
  21. Lani, N. S., Ngadi, N., Yahya, N. Y., & Abd Rahman, R. (2017). Synthesis, characterization and performance of silica impregnated calcium oxide as heterogeneous catalyst in biodiesel production. Journal of Cleaner Production, 146, 116-124. https://doi.org/10.1016/j.jclepro.2016.06.058
  22. Lee, H. V., Juan, J. C., Yun Hin, T. Y., & Ong, H. C. (2016). Environment-friendly heterogeneous alkaline-based mixed metal oxide catalysts for biodiesel production. Energies, 9(8), 611. https://doi.org/10.3390/en9080611
  23. Md Ali, S. A., Hamid, K. H. K., & Ismail, K. N. (2017, September). Effect of calcination temperature on the structure and catalytic performance of 80Ni20CO/SiO2 catalyst for CO2 methanation. In AIP Conference Proceedings (Vol. 1885, No. 1, p. 020272). AIP Publishing LLC. https://doi.org/10.1063/1.5002466
  24. Mello, V. M., Pousa, G. P., Pereira, M. S., Dias, I. M., & Suarez, P. A. (2011). Metal oxides as heterogeneous catalysts for esterification of fatty acids obtained from soybean oil. Fuel Processing Technology, 92(1), 53-57. https://doi.org/10.1016/j.fuproc.2010.08.019
  25. Meloni, G. N., & Bertotti, M. (2017). 3D printing scanning electron microscopy sample holders: A quick and cost-effective alternative for custom holder fabrication. PloS one, 12(7), e0182000. https://doi.org/10.1371/journal.pone.0182000
  26. Michalak, Izabela, Krzysztof Marycz, Katarzyna Basi N, and Katarzyna Chojnacka. (2014). Using SEM-EDX and ICP-OES to Investigate the Elemental Composition of Green Macroalga Vaucheria Sessilis. The Scientific World Journal 2014. https://doi.org/10.1155/2014/891928
  27. Moorthy, K., Patwa, N., & Gupta, Y. (2019). Breaking barriers in deployment of renewable energy. Heliyon, 5(1), e01166. https://doi.org/10.1016/j.heliyon.2019.e01166
  28. Moradi, G., Mohadesi, M., & Hojabri, Z. (2014). Biodiesel production by CaO/SiO 2 catalyst synthesized by the sol–gel process. Reaction kinetics, mechanisms and catalysis, 113(1), 169-186. https://link.springer.com/article/10.1007/s11144-014-0728-9
  29. Mubarok, M. Z., & Adi Kurniawan, C. (2015). Synthesis of magnesia powder from East Java dolomite through leaching, precipitation and calcination. Advanced Materials Research ,1112, 550-554. https://doi.org/10.4028/www.scientific.net/AMR.1112.550
  30. Murguía-Ortiz, D., Cordova, I., Manriquez, M. E., Ortiz-Islas, E., Cabrera-Sierra, R., Contreras, J. L., ... & Castro, L. V. (2021). Na-CaO/MgO dolomites used as heterogeneous catalysts in canola oil transesterification for biodiesel production. Materials Letters, 291, 129587. https://doi.org/10.1016/j.matlet.2021.129587
  31. Ndak, Y. A., Sarifudin, K., & Sudirman, S. (2021). Pengaruh Komposisi SiO2 Pada Katalis Cao/SiO2 Terhadap Karakter Morfologi Permukaan, Ukuran Partikel dan Rendamen Metil Ester Reaksi Transesterifikasi Minyak Jarak. Jurnal Beta Kimia, 1(2), 64-77. https://doi.org/10.201185/jbk.v1i2.5583
  32. Ogunkunle, O., Oniya, O. O., & Adebayo, A. O. (2017). Yield response of biodiesel production from heterogeneous and homogeneous catalysis of milk bush seed (Thevetia peruviana) oil. Energy and Policy Research, 4(1), 21-28. https://doi.org/10.1080/23815639.2017.1319772
  33. Pandiangan, K. D., Jamarun, N., Arief, S., & Simanjuntak, W. (2016). Transesterification of Castor oil using MgO/SiO2 Catalyst and Coconut oil as Co-reactant. Oriental Journal of Chemistry, 32(1), 385-390. http://dx.doi.org/10.13005/ojc/320143
  34. Ramos, M., Dias, A. P. S., Puna, J. F., Gomes, J., & Bordado, J. C. (2019). Biodiesel production processes and sustainable raw materials. Energies, 12(23), 4408. https://doi.org/10.3390/en12234408
  35. Rao, P. V., & Chary, D. P. (2018). Characteristics comparison of biodiesel-diesel blend (B20) fuel with alcohol additives. International Journal of Advanced Engineering Research and Science, 5(8), 128-132. https://dx.doi.org/10.22161/ijaers.5.8.17
  36. Sari, N., Jalil, Z., & Rahwanto, A. (2013). Identification of Oxide Compound in Dolomite Mineral from Aceh Tamiang Region. Journal of Aceh Physics Society. 2(1), 1-2; https://jurnal.usk.ac.id/JAcPS/article/view/687/639
  37. Satriadi, H., Pratiwi, I. Y., Khuriyah, M., Widayat, Hadiyanto & Prameswari, J. (2022). Geothermal solid waste derived Ni/Zeolite catalyst for waste cooking oil processing. Chemosphere, 286, 131618. https://doi.org/10.1016/j.chemosphere.2021.131618
  38. Siregar, A. G. A., Manurung, R., & Taslim, T. (2021). Synthesis and Characterization of Sodium Silicate Produced from Corncobs as a Heterogeneous Catalyst in Biodiesel Production. Indonesian Journal of Chemistry. 21(1), 88-96; https://doi.org/10.22146/ijc.53057
  39. Suryandari, A. S., Ardiansyah, Z. R., Putri, V. N. A., Arfiansyah, I., Mustain, A., & Dewajani, H. (2021). Sintesis Biodiesel melalui Transesterifikasi Minyak Goreng Bekas Berbasis Heterogen CaO dari Limbah Cangkang Telur Ayam. Jurnal Rekayasa Bahan Alam dan Energi Berkelanjutan, 5(1), 22-7. https://rbaet.ub.ac.id/index.php/rbaet/article/view/88/33
  40. Tsao, K. C., & Yang, H. (2018). Oxygen reduction catalysts on nanoparticle electrodes. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry (pp. 796-811). Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.13334-7
  41. Vieira, S. S., Magriotis, Z. M., Graça, I., Fernandes, A., Ribeiro, M. F., Lopes, J. M. F., & Saczk, A. A. (2017). Production of biodiesel using HZSM-5 zeolites modified with citric acid and SO42−/La2O3. Catalysis Today, 279, 267-273. https://doi.org/10.1016/j.cattod.2016.04.014
  42. Wahyono, Y., Hadiyanto, H., Gheewala, S. Budiarjo, M.A., Widayat, W.,, and Christwardana, M.A. (2023). Life cycle assessment for evaluating the energy balance of the multi-feedstock biodiesel production process in Indonesia, International Journal of Ambient Energy. https://doi.org/10.1080/01430750.2023.2171485
  43. Widayat, W., Suherman (2012). Biodiesel production from rubber seed oil via esterification process, International Journal of Renewable Energy Development 1(2), 57–60. https://doi.org/10.14710/ijred.1.2.57-60
  44. Widayat, Satriadi, H., Yuariski, O., Murwono, D. (2013). Biodiesel production from bulk frying oil with ultrasound assisted, Research Journal of Applied Sciences, Engineering and Technology 6(10), 1732–1739. http://dx.doi.org/10.19026/rjaset.6.3896
  45. Widayat, W., Wicaksono, A.R., Firdaus, L.H., Okvitarini, N. (2016). Synthesis H-Zeolite catalyst by impregnation KI/KIO3 and performance test catalyst for biodiesel production, IOP Conference Series: Materials Science and Engineering 107(1), 012044. https://iopscience.iop.org/article/10.1088/1757-899X/107/1/012044
  46. Widayat, W., Darmawan, T., Hadiyanto, H., Rosyid, R.Ar. (2017). Preparation of Heterogeneous CaO Catalysts for Biodiesel Production, Journal of Physics: Conference Series 877(1), 012018. https://iopscience.iop.org/article/10.1088/1742-6596/877/1/012018
  47. Widayat, W., Darmawan, T., Rosyid, R.Ar., Hadiyanto, H. (2017) Biodiesel Production by Using CaO Catalyst and Ultrasonic Assisted, Journal of Physics: Conference Series 877(1), 012037. https://iopscience.iop.org/article/10.1088/1742-6596/877/1/012037
  48. Widayat, W., Okvitarini, N., & Philia, J. (2020, January). The effect of impregnated type at kaolin catalyst on biodiesel production from used cooking oil. In AIP Conference Proceedings (Vol. 2197, No. 1, p. 030009). AIP Publishing LLC. https://doi.org/10.1063/1.5140901
  49. Yaakob, Z., Mohammad, M., Alherbawi, M., Alam, Z., & Sopian, K. (2013). Overview of the production of biodiesel from waste cooking oil. Renewable and sustainable energy reviews, 18, 184-193. https://doi.org/10.1016/j.rser.2012.10.016
  50. Zhang, W. B. (2012). Review on analysis of biodiesel with infrared spectroscopy. Renewable and Sustainable Energy Reviews, 16(8), 6048-6058. https://doi.org/10.1016/j.rser.2012.07.003

Last update:

  1. Harnessing the power of cow dung: Exploring the environmental, energy, and economic potential of biogas production in Indonesia

    Kusmiyati Kusmiyati, Dewa Kusuma Wijaya, B.J. Ridwan Hartono, Guruh Fajar Shidik, Ahmad Fudholi. Results in Engineering, 20 , 2023. doi: 10.1016/j.rineng.2023.101431
  2. Application of Response Surface Methodology (RSM) to Study Transesterification of Palm Oil in the Presence of Zeolite-A as Catalyst

    Kamisah Delilawati Pandiangan, Khoirin Nisa, Wasinton Simanjuntak, Diska Indah Alista, Erika Noviana, Selvia Anggraini Hasan. Journal of Multidisciplinary Applied Natural Science, 4 (1), 2023. doi: 10.47352/jmans.2774-3047.201
  3. Biochar‐based catalysts derived from biomass waste: production, characterization, and application for liquid biofuel synthesis

    Van Nhanh Nguyen, Prabhakar Sharma, Lech Rowinski, Huu Cuong Le, Duc Trong Nguyen Le, Sameh M. Osman, Huu Son Le, Thanh Hai Truong, Phuoc Quy Phong Nguyen, Dao Nam Cao. Biofuels, Bioproducts and Biorefining, 18 (2), 2024. doi: 10.1002/bbb.2593
  4. A comprehensive review on the use of biodiesel for diesel engines

    Van Giao Nguyen, Minh Tuan Pham, Nguyen Viet Linh Le, Huu Cuong Le, Thanh Hai Truong, Dao Nam Cao. International Journal of Renewable Energy Development, 12 (4), 2023. doi: 10.14710/ijred.2023.54612
  5. A Review on Metal–Organic Framework as a Promising Catalyst for Biodiesel Production

    Van Giao Nguyen, Prabhakar Sharma, Marek Dzida, Van Hung Bui, Huu Son Le, Ahmed Shabana El-Shafay, Huu Cuong Le, Duc Trong Nguyen Le, Viet Dung Tran. Energy & Fuels, 38 (4), 2024. doi: 10.1021/acs.energyfuels.3c04203
  6. Magnesium Oxide (MgO) as a Sustainable Catalyst for Biodiesel Production from Waste Cooking Oil: A Comparative Study with KOH

    Aboulbaba Eladeb. Engineering, Technology & Applied Science Research, 14 (2), 2024. doi: 10.48084/etasr.7055

Last update: 2024-04-22 01:00:07

No citation recorded.