skip to main content

Unveiling frequency-dependent dielectric behavior of cellulose-based polymer electrolyte at various temperature and salt concentration

1Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI Depok, Jawa Barat, Indonesia

2Research Center of Advanced Materials, National Research and Innovation Agency (BRIN), KST BJ. Habibie, Gd. 440-441, Tangerang Selatan, Banten, Indonesia

3Asosiasi Peneliti Indonesia di Korea (APIK), Seoul, 07342, South Korea

Received: 18 Mar 2023; Revised: 2 Jun 2023; Accepted: 20 Jun 2023; Available online: 30 Jun 2023; Published: 15 Jul 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

Dielectric behavior of cellulose-based polymer electrolyte was studied at various temperature and salt concentration. A polymer electrolyte membrane based on cellulose acetate (CA) as the polymer host and LiClO4 as the dopant salt was fabricated using the solution casting technique. The dopant salt concentration was varied as 0.3, 0.5, 0.67, and 1M. Dielectric relaxation spectroscopy characterization were performed using potentiostat at frequency ranging from 0.1 Hz to 1 MHz. Measurements were performed by sandwiching the membrane between stainless steel plates. The ionic conductivity was then calculated based on the Cole–Cole plot obtained from the impedance measurement. It was found that sample 1 M had the highest ionic conductivity at high frequencies. However, the frequency-dependent conductance plot showed that the ionic conductivity of the 1 M sample significantly decreased at low frequencies, i.e. from 3.41×10-5 S/cm at 1 MHz to 1.9×10-8 S/cm at 0.1 Hz. Other samples did not experience this phenomenon, including those with a Celgard© commercial membrane to represent commercial Li-ion batteries. This is caused by excess charge accumulation, leading to a high concentration of immobile charge carriers, which reduces the available free volume surrounding the polymer chain. This resulted in a significant decrease in ionic conductivity at low frequencies. Temperature variation was also performed on the conductivity measurement at 30-70 °C. Temperature variation showed more predictable behavior, where increasing the temperature activated charge carriers and enhanced ionic conductivity, from 1.81×10-5 S/cm at room temperature to 9.04×10-5 at 70°C. Sweeping across the frequency range results in a consistent sequence of ionic conductivities among the samples at various temperatures. This work is beneficial for evaluating a biomass-based polymer electrolyte complex in a Li-ion battery environment. Feasibility studies can be performed at various concentrations and temperatures to determine the optimal level of dopant salt input across a broad frequency range.

Fulltext View|Download
Keywords: cellulose acetate; polymer electrolyte; ionic conductivity; dielectric properties
Funding: Universitas Indonesia under contract NKB-326/UN2.RST/HKP.05.00/2022

Article Metrics:

  1. Alipoori, S., Torkzadeh, M. M., Mazinani, S., Aboutalebi, S. H., & Sharif, F. (2021). Performance-tuning of PVA-based gel electrolytes by acid/PVA ratio and PVA molecular weight. SN Applied Sciences, 3(3), 1–13.
  2. Arcana, I. M., Bundjali, B., & Hariyawati, N. K. (2014). Preparation of polymers electrolyte membranes for lithium battery from styrofoam waste. Advanced Materials Research, 875–877, 1529–1533.
  3. Arya, A., & Sharma, A. L. (2017). Polymer electrolytes for lithium ion batteries: a critical study. Ionics, 23, 497–540.
  4. Arya, A., & Sharma, A. L. (2018). Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. Journal of Materials Science: Materials in Electronics, 29(20), 17903–17920.
  5. Awang, F. F., Hassan, M. F., & Kamarudin, K. H. (2021). Corn starch doped with sodium iodate as solid polymer electrolytes for energy storage applications. Acta Polytechnica, 61(4), 497–503.
  6. Aziz, S. B., Abidin, Z. H. Z., & Arof, A. K. (2010). Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan silver triflate electrolyte membrane. Express Polymer Letters, 4(5), 300–310.
  7. Aziz, Shujahadeen B., Abdullah, O. G., Rasheed, M. A., & Ahmed, H. M. (2017). Effect of high salt concentration (HSC) on structural, morphological, and electrical characteristics of chitosan based solid polymer electrolytes. Polymers, 9, 187.
  8. Chaurasia, S. K., Sharma, A. K., Singh, P. K., Lu, L., Ni, J., Savilov, S. V, Kuznetsov, A., Polu, A. R., Singh, A., & Singh, M. K. (2022). Structural, thermal, and electrochemical studies of biodegradable gel polymer electrolyte for electric double layer capacitor. 0(0), 1–10.
  9. Das, A. M., Ali, A. A., & Hazarika, M. P. (2014). Synthesis and characterization of cellulose acetate from rice husk: Eco-friendly condition. Carbohydrate Polymers, 112, 342–349.
  10. Deng, X., Huang, Y., Song, A., Liu, B., Yin, Z., Wu, Y., Lin, Y., Wang, M., Li, X., & Cao, H. (2019). Gel polymer electrolyte with high performances based on biodegradable polymer polyvinyl alcohol composite lignocellulose. Materials Chemistry and Physics, 229, 232–241.
  11. Dieterich, W., & Maass, P. (2002). Non-Debye relaxations in disordered ionic solids. Chemical Physics, 284(1–2), 439–467.
  12. Fanggao, C., Saunders, G. A., Lambson, E. F., Hampton, R. N., Carini, G., Di Marco, G., & Lanza, M. (1996). Temperature and frequency dependencies of the complex dielectric constant of poly(ethylene oxide) under hydrostatic pressure. Journal of Polymer Science, Part B: Polymer Physics, 34(3), 425–433.<425::AID-POLB3>3.0.CO;2-S
  13. Fernández-Sánchez, C., McNeil, C. J., & Rawson, K. (2005). Electrochemical impedance spectroscopy studies of polymer degradation: Application to biosensor development. TrAC - Trends in Analytical Chemistry, 24(1), 37–48.
  14. Fuqiang, T., & Yoshimichi, O. (2014). Electric Modulus Powerful Tool for Analyzing Dielectric Behavior. IEEE Transactions on Dielectrics and Electrical Insulation, 21(3), 929–931.
  15. Galiano, F., Briceño, K., Marino, T., Molino, A., Christensen, K. V., & Figoli, A. (2018). Advances in biopolymer-based membrane preparation and applications. Journal of Membrane Science, 564, 562–586.
  16. Gou, J., Liu, W., & Tang, A. (2020). A renewable gel polymer electrolyte based on the different sized carboxylated cellulose with satisfactory comprehensive performance for rechargeable lithium ion battery. Polymer, 208, 122943.
  17. He, R., Peng, F., Dunn, W. E., & Kyu, T. (2017). Chemical and electrochemical stability enhancement of lithium bis(oxalato)borate (LiBOB)-modified solid polymer electrolyte membrane in lithium ion half-cells. Electrochimica Acta, 246, 123–134.
  18. Hu, J., Liu, Y., Zhang, M., He, J., & Ni, P. (2020). A separator based on cross-linked nano-SiO2 and cellulose acetate for lithium-ion batteries. Electrochimica Acta, 334.
  19. Karan, N. K., Pradhan, O. K., Thomas, R., Natesan, B., & Katiyar, R. S. (2008). Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro- Methane sulfonate (PEO-LiCF3so3): Ionic conductivity and dielectric relaxation. Solid State Ionics, 179(19–20), 689–696.
  20. Karthik, S., Suresh, J., Vakees, E., Kayalvizhi, M., Thangaraj, V., Balaji, K., Selvasekarapandian, S., & Arun, A. (2016). Polyvinyl Alcohol Based Solid Electrolyte Film: Synthesis, Characterization and Electrical Properties. Macromolecular Symposia, 362(1), 18–25.
  21. Karthika, P., Sasikala, V., & Sundaresan, B. (2017). Analysis of conductance spectra and tranference number measurements on polyvinyl chloride – ammonium thio cyanate polymer electrolyte added with SRTiO3 Shanlax International Journal of Arts , Science & Humanities. 5(1), 347–351.
  22. Ladhar, A., Arous, M., Kaddami, H., Raihane, M., Kallel, A., Graça, M. P. F., & Costa, L. C. (2015). Ionic hopping conductivity in potential batteries separator based on natural rubber-nanocellulose green nanocomposites. Journal of Molecular Liquids, 211, 792–802.
  23. Lizundia, E., Costa, C. M., Alves, R., & Lanceros-Méndez, S. (2020). Cellulose and its derivatives for lithium ion battery separators: A review on the processing methods and properties. Carbohydrate Polymer Technologies and Applications, 1(June), 100001.
  24. Maia, B. A., Magalhães, N., Cunha, E., Braga, M. H., Santos, R. M., & Correia, N. (2022). Designing Versatile Polymers for Lithium-Ion Battery Applications: A Review. Polymers, 14(3).
  25. Malathi, J., Kumaravadivel, M., Brahmanandhan, G. M., Hema, M., Baskaran, R., & Selvasekarapandian, S. (2010). Structural, thermal and electrical properties of PVA-LiCF3SO3 polymer electrolyte. Journal of Non-Crystalline Solids, 356(43), 2277–2281.
  26. Monisha, S., Selvasekarapandian, S., Mathavan, T., Milton Franklin Benial, A., Manoharan, S., & Karthikeyan, S. (2016). Preparation and characterization of biopolymer electrolyte based on cellulose acetate for potential applications in energy storage devices. Journal of Materials Science: Materials in Electronics, 27(9), 9314–9324.
  27. Polu, A. R., Kumar, R., & Rhee, H. W. (2015). Magnesium ion conducting solid polymer blend electrolyte based on biodegradable polymers and application in solid-state batteries. Ionics, 21(1), 125–132.
  28. Rajeswari, N., Selvasekarapandian, S., Sanjeeviraja, C., Kawamura, J., & Asath Bahadur, S. (2014). A study on polymer blend electrolyte based on PVA/PVP with proton salt. Polymer Bulletin, 71(5), 1061–1080.
  29. Ramesh, S., Liew, C. W., & Arof, A. K. (2011). Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Journal of Non-Crystalline Solids, 357(21), 3654–3660.
  30. Ramesh, S., Shanti, R., & Morris, E. (2013). Employment of [Amim] Cl in the effort to upgrade the properties of cellulose acetate based polymer electrolytes. Cellulose, 20(3), 1377–1389.
  31. Ramya, C. S., Selvasekarapandian, S., Hirankumar, G., Savitha, T., & Angelo, P. C. (2008). Investigation on dielectric relaxations of PVP-NH4SCN polymer electrolyte. Journal of Non-Crystalline Solids, 354(14), 1494–1502.
  32. Razalli, S. M. M., Saaid, S. I. Y. S. M., Ali, A. M. M., Hassan, O. H., & Yahya, M. Z. A. (2015). Cellulose acetate-lithium bis(trifluoromethanesulfonyl)imide solid polymer electrolyte: ATR-FTIR and ionic conductivity behavior. Functional Materials Letters, 8(3), 3–6.
  33. Sampath, U. G. T. M., Ching, Y. C., Chuah, C. H., Sabariah, J. J., & Lin, P. C. (2016). Fabrication of porous materials from natural/synthetic biopolymers and their composites. Materials, 9(12), 1–32.
  34. Sudiarti, T., Wahyuningrum, D., Bundjali, B., & Made Arcana, I. (2017). Mechanical strength and ionic conductivity of polymer electrolyte membranes prepared from cellulose acetate-lithium perchlorate. IOP Conference Series: Materials Science and Engineering, 223(1).
  35. Tamilselvi, P., & Hema, M. (2014). Conductivity studies of LiCF3SO3 doped PVA: PVdF blend polymer electrolyte. Physica B: Condensed Matter, 437, 53–57.
  36. Wang, H. H., Jung, J. T., Kim, J. F., Kim, S., Drioli, E., & Lee, Y. M. (2019). A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS). Journal of Membrane Science, 574, 44–54.
  37. Woo, H. J., Majid, S. R., & Arof, A. K. (2012). Dielectric properties and morphology of polymer electrolyte based on poly(ε-caprolactone) and ammonium thiocyanate. Materials Chemistry and Physics, 134(2–3), 755–761.
  38. Yang, L., Furczon, M. M., Xiao, A., Lucht, B. L., Zhang, Z., & Abraham, D. P. (2010). Effect of impurities and moisture on lithium bisoxalatoborate (LiBOB) electrolyte performance in lithium-ion cells. Journal of Power Sources, 195(6), 1698–1705.
  39. Yusof, Y. M., & Kadir, M. F. Z. (2016). Electrochemical characterizations and the effect of glycerol in biopolymer electrolytes based on methylcellulose-potato starch blend. Molecular Crystals and Liquid Crystals, 627(1), 220–233.
  40. Zalosh, R., Gandhi, P., & Barowy, A. (2021). Journal of Loss Prevention in the Process Industries Lithium-ion energy storage battery explosion incidents. Journal of Loss Prevention in the Process Industries, 72, 104560.
  41. Zhao, X., Wang, W., Huang, C., Luo, L., Deng, Z., Guo, W., Xu, J., & Meng, Z. (2021). A novel cellulose membrane from cattail fibers as separator for Li-ion batteries. Cellulose, 28(14), 9309–9321.
  42. Zhao, Y., Bai, Y., Bai, Y., An, M., Chen, G., & Li, W. (2018). A rational design of solid polymer electrolyte with high salt concentration for lithium battery. Journal of Power Sources, 407(July), 23–30.
  43. Zhu, L. (2014). Exploring strategies for high dielectric constant and low loss polymer dielectrics. Journal of Physical Chemistry Letters, 5(21), 3677–3687.

Last update:

  1. Electrospinning of Bacterial Cellulose Modified with Acetyl Groups for Polymer Electrolyte Li-Ion Batteries

    Qolby Sabrina, Sudaryanto, Nurhalis Majid, Akihide Sugawara, Yu-I Hsu, Rike Yudianti, Hiroshi Uyama. Journal of Electronic Materials, 2024. doi: 10.1007/s11664-024-10958-5

Last update: 2024-02-26 11:16:30

No citation recorded.