skip to main content

Synthesis of Al-Y doped-lithium lanthanum zirconate and the effect of cold isostatic pressure to its electrical properties

Research Group of Solid-State Chemistry & Catalysis, Chemistry Department, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta 57126, Indonesia

Received: 21 Apr 2023; Revised: 24 Jun 2023; Accepted: 5 Jul 2023; Available online: 10 Jul 2023; Published: 15 Jul 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
This research aims to study the Al-Y dopant to Lithium Lanthanum Zirconate (LLZO) to the characteristics and electrical properties of the LLZO as solid electrolyte. The synthesis was conducted through solid state reaction with Al2O3 and Y2O3 as dopant precursors. X-ray diffraction analysis along with Le Bail refinement was done to understand their structure, and phase content inside. The result found that Al and Y doping increased the cubic phase from 49.58% to 84.91%. The Al-Y doped-LLZO (LLZAYO) powder was then treated by a various cold isostatic pressing, CIP of 0, 20, 30, and 40 MPa to understand the effect of cold isostatic pressure to the ionic conductivity and solid electrolyte performance of the material even without heat sintering treatment. The result found that the green pellet of LLZAYO) which was isostatically pressed by 40 MPa at room temperature provides (9.06 ±0.26) x10-6 Scm-1, about 8 times higher than the LLZO without doping, i.e., (1.25 ±0.01) x 10-6 Scm-1. All solid-state battery with the prepare LLZAYO CIP 40 as solid electrolyte shows reversible reaction of Li/Li+ redox accompanied with Al/Al3+ redox. The Al/Al3+ reaction seems to decrease the electronic resistance between LCO-LLZAYO CIP40-Li which causes the full cell performance to decrease. The initial specific charging capacity is 82 mAh/g, and the initial discharge was 83 mAh/g, confirming 101 % of Coulombic efficiency. The discharge capacity drops to 46 mAh/g at second cycle, leading to a decrease in Coulombic efficiency to 56 %.
Fulltext View|Download
Keywords: lithium lanthanum zirconate; aluminium dopant; yttrium dopant; all solid-state lithium-ion battery

Article Metrics:

  1. APPENDIX H Standard Reduction Potentials [WWW Document], 2022. URL (accessed 4.21.23)
  2. Awaka, J., Kijima, N., Hayakawa, H., Akimoto, J., 2009. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J. Solid State Chem.
  3. Awaka, J., Takashima, A., Kataoka, K., Kijima, N., Idemoto, Y., Akimoto, J., 2011. Crystal structure of fast lithium-ion-conducting cubic Li 7La3Zr2O12. Chem. Lett. 40, 60–62.
  4. Bernstein, N., Johannes, M.D., Hoang, K., 2012. Origin of the structural phase transition in Li 7La 3Zr 2O 12. Phys. Rev. Lett.
  5. Bitzer, M., Gestel, T. Van, Uhlenbruck, S., Hans-Peter-Buchkremer, 2016. Sol-gel synthesis of thin solid Li7La3Zr2O12 electrolyte films for Li-ion batteries. Thin Solid Films 615, 128–134.
  6. Campanella, D., Belanger, D., Paolella, A., 2021. Beyond garnets, phosphates and phosphosulfides solid electrolytes: New ceramic perspectives for all solid lithium metal batteries. J. Power Sources 482, 228949.
  7. Chen, F., Zhang, Y., Hu, Q., Cao, S., Song, S., Lu, X., Shen, Q., 2021. S/MWCNt/LLZO composite electrode with e−/S/Li+ conductive network for all-solid -state Lithium–Sulfur batteries. J. Solid State Chem. 301, 122341.
  8. Chen, W., Yu, H., Lee, S.Y., Wei, T., Li, J., Fan, Z., 2018. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem. Soc. Rev. 47, 2837–2872.
  9. El-Shinawi, H., Paterson, G.W., MacLaren, D.A., Cussen, E.J., Corr, S.A., 2017. Low-temperature densification of Al-doped Li 7 La 3 Zr 2 O 12 : a reliable and controllable synthesis of fast-ion conducting garnets. J. Mater. Chem. A 5, 319–329.
  10. Ghosh, K., Wasim Raja, M., 2022. Ga-Doped LLZO Solid-State Electrolyte with Unique “Plate-like” Morphology Derived from Water Hyacinth ( Eichhornia crassipes ) Aquatic Weed: Waste to Wealth Conversion. ACS Omega 7, 33385–33396.
  11. Hayashi, A., Minami, K., Ujiie, S., Tatsumisago, M., 2010. Preparation and ionic conductivity of Li 7 P 3 S 11 − z glass-ceramic electrolytes. J. Non. Cryst. Solids 356, 2670–2673.
  12. Hung, I.M., Mohanty, D., 2023. Preparation and characterization of LLZO-LATP composite solid electrolyte for solid-state lithium-ion battery. Solid State Commun. 364, 115135.
  13. Hwang, S., Kim, D.-H., Shin, J.H., Jang, J.E., Ahn, K.H., Lee, C., Lee, H., 2018. Ionic Conduction and Solution Structure in LiPF 6 and LiBF 4 Propylene Carbonate Electrolytes. J. Phys. Chem. C 122, 19438–19446.
  14. Inaguma, Y., Seo, A., Katsumata, T., 2004. Synthesis and lithium ion conductivity of cubic deficient perovskites SrLi?TiTaO and the La-doped compounds. Solid State Ionics 174, 19–26.
  15. Kim, D.H., Kim, M.Y., Yang, S.H., Ryu, H.M., Jung, H.Y., Ban, H., Park, S., Lim, J.S., Kim, H., 2019. Fabrication and electrochemical characteristics of NCM-based all-solid lithium batteries using nano-grade garnet Al-LLZO powder. J. Ind. Eng. Chem. 71, 445–451.
  16. Kingery, W.D., Bowen, H.K., Uhlmann, D.R., Frieser, R., 1977. Introduction to Ceramics. J. Electrochem. Soc. 124, 152C-152C.
  17. Kokal, I., Somer, M., Notten, P.H.L., Hintzen, H.T., 2011. Sol-gel synthesis and lithium ion conductivity of Li7La 3Zr2O12 with garnet-related type structure. Solid State Ionics 185, 42–46.
  18. Li, H.Y., Huang, B., Huang, Z., Wang, C.A., 2019. Enhanced mechanical strength and ionic conductivity of LLZO solid electrolytes by oscillatory pressure sintering. Ceram. Int. 45, 18115–18118.
  19. Li, J., Chang, G., Xu, L., Gao, T., Ma, J., Zhan, D., Lu, X., 2023. EC modified PEO/PVDF-LLZO composite electrolytes for solid state lithium metal batteries. J. Indian Chem. Soc. 100, 100959.
  20. Li, T., Li, X., Wang, Z., Guo, H., Peng, W., Zeng, K., 2015. Electrochemical properties of LiNi0.6Co0.2Mn0.2O2 as cathode material for Li-ion batteries prepared by ultrasonic spray pyrolysis. Mater. Lett. 159, 39–42.
  21. Li, Y., Xu, B., Xu, H., Duan, H., Lü, X., Xin, S., Zhou, W., Xue, L., Fu, G., Manthiram, A., Goodenough, J.B., 2017. Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium‐Ion Batteries. Angew. Chemie Int. Ed. 56, 753–756.
  22. Libretex, C., 2023. P1: Standard Reduction Potentials by Element [WWW Document]. URL
  23. Martín, P., López, M.L., Pico, C., Veiga, M.L., 2007. Li(4-x)/3Ti(5-2x)/3CrxO4 (0 ≤ x ≤ 0.9) spinels: New negatives for lithium batteries. Solid State Sci. 9, 521–526.
  24. Mizuno, F., Hayashi, A., Tadanaga, K., Tatsumisago, M., 2005. New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses. Adv. Mater. 17, 918–921
  25. Natalia, V., Rahmawati, F., Wulandari, A., Purwanto, A., 2019. Graphite/Li 2 ZrO 3 anode for a LiFePO 4 battery. Chem. Pap. 73.
  26. Priyono, S., Primasari, R.D., Saptari, S.A., Prihandoko, B., 2017. Synthesize Li 4 Ti 5 O 12 from technical grade raw material by excess Li)O.H2O as Anode for Lithium Ion Battery. J. Physic 87, 1–6
  27. Qie, L., Chen, W.M., Wang, Z.H., Shao, Q.G., Li, X., Yuan, L.X., Hu, X.L., Zhang, W.X., Huang, Y.H., 2012. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 24, 2047–2050.
  28. Rahmawati, F., Zuhrini, N., Nugrahaningtyas, K.D., Arifah, S.K., 2019. Yttria-stabilized zirconia (YSZ) film produced from an aqueous nano-YSZ slurry: preparation and characterization. J. Mater. Res. Technol. 1–10.
  29. Rangasamy, E., Wolfenstine, J., Sakamoto, J., 2012. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li 7La 3Zr 2O 12. Solid State Ionics 206, 28–32.
  30. Rettenwander, D., Geiger, C.A., Tribus, M., Tropper, P., Amthauer, G., 2014. A Synthesis and Crystal Chemical Study of the Fast Ion Conductor Li7–3xGaxLa3 Zr2O12 with x = 0.08 to 0.84. Inorg. Chem. 52, 6264–6269.
  31. Takada, K., 2018. Progress in solid electrolytes toward realizing solid-state lithium batteries. J. Power Sources 394, 74–85.
  32. Wang, C., Lin, P.P., Gong, Y., Liu, Z.G., Lin, T.S., He, P., 2021. Synergistic impacts of Ca2+ and Ta5+ dopants on electrical performance of garnet-type electrolytes. J. Alloys Compd. 879, 160420.
  33. Wang, J., Zhao, Y., Shi, X., Zhang, L., 2018. Effect of Mn dopant on the grain size and electrical properties of (Ba, Sr)TiO3 ceramics. J. Mater. Sci. Mater. Electron. 29, 11575–11580.
  34. Xiang, X., Liu, Y., Chen, F., Yang, W., Yang, J., Ma, X., Chen, D., Su, K., Shen, Q., Zhang, L., 2020. Crystal structure and lithium ionic transport behavior of Li site doped Li7La3Zr2O12. J. Eur. Ceram. Soc. 40, 3065–3071.
  35. Zhao, P., Cao, G., Jin, Z., Ming, H., Wen, Y., Xu, Y., Zhu, X., Xiang, Y., Zhang, S., 2018. Self-consolidation mechanism and its application in the preparation of Al-doped cubic Li7La3Zr2O12. Mater. Des. 139, 65–71.
  36. Zhou, X., Huang, L., Elkedim, O., Xie, Y., Luo, Y., Chen, Q., Zhang, Y., Chen, Y., 2022. Sr2+ and Mo6+ co-doped Li7La3Zr2O12 with superior ionic conductivity. J. Alloys Compd. 891, 161906.

Last update:

No citation recorded.

Last update: 2024-07-15 03:18:17

No citation recorded.