skip to main content

Experimental investigation on the performance of a pyramid solar still for varying water depth, contaminated water temperature, and addition of circular fins

1Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India

2Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia

Received: 11 Aug 2023; Revised: 8 Oct 2023; Accepted: 21 Oct 2023; Available online: 26 Oct 2023; Published: 1 Nov 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The experimental investigation was meant to investigate the effect of water depth in the basin, the water temperature at the inlet of solar still, and adding circular fins to the pyramid solar still on freshwater output. The investigation was divided into three sections. The first area of research is to study effect of increasing water depth in the solar still, which ranged from 2 to 6 cm, second section concentrated on varying the inflow water temperature from 30 to 50ºC, and third section investigated the influence of incorporating circular fins into the solar still basin on the water output and quality. The experimental findings showed that basin depth considerably impacts freshwater flow. The highest significant difference, 38%, was recorded by changing the water level in the basin from 2 to 6 cm. Freshwater yielded the most at a depth of 2 cm, totalling 1250.3 mL, followed by 1046 mL at a depth of 3 cm. A water depth of 4 cm produced 999 mL, whereas a water depth of 5 cm made 911 mL. The lowest production occurred at a water depth of 6 cm, producing 732 mL; furthermore, including fins at the bottom increased productivity by 8.2%. Elevating the temperature from 30 to 50ºC of the inlet water led to a water output increase of 15.3% to 22.2%. These findings underscore the profound potential of harnessing solar energy to address global water challenges and pave the way for further advancements in efficient freshwater production

Fulltext View|Download
Keywords: Solar still; Desalination; Water purification; sensible heat; latent heat; solar energy

Article Metrics:

  1. Ahmadi, G., Toghraie, D., & Akbari, O. A. (2017). Efficiency improvement of a steam power plant through solar repowering. International Journal of Exergy, 22(2), 158. https://doi.org/10.1504/ijex.2017.083015
  2. Aktaş, M., Sözen, A., Tuncer, A. D., Arslan, E., Koşan, M., & Çürük, O. (2019). Energy-Exergy Analysis of A Novel Multi-Pass Solar Air Collector With Perforated Fins. International Journal of Renewable Energy Development, 8(1), 47. https://doi.org/10.14710/ijred.8.1.47-55
  3. Alaudeen, A., Johnson, K., Ganasundar, P., Syed Abuthahir, A., & Srithar, K. (2014). Study on stepped type basin in a solar still. Journal of King Saud University - Engineering Sciences, 26(2), 176–183. https://doi.org/10.1016/j.jksues.2013.05.002
  4. Al-Garni, A. Z. (2012). Productivity Enhancement of Solar Still Using Water Heater and Cooling Fan. Journal of Solar Energy Engineering, 134(3). https://doi.org/10.1115/1.4005760
  5. AlRubaiea, J. F., Latteiff, F. A., Mahdi, J. M., Atiya, M. A., & Majdi, H. S. (2021). Desalination of Agricultural Wastewater by Solar Adsorption System: A Numerical Study. International Journal of Renewable Energy Development, 10(4), 901–910. https://doi.org/10.14710/ijred.2021.38798
  6. Diabil, H. A. N. (2022). Experimental study to enhance the productivity of single-slope single-basin solar still. Open Engineering, 12(1), 157–168. https://doi.org/10.1515/eng-2022-0015
  7. Du, Y., Wen, J., Deng, K., Zou, L., Liu, X., Liu, P., Liu, B., Lv, X., Tian, W., & Ji, J. (2023). Janus film evaporator with improved light-trapping and gradient interfacial hydrophilicity toward sustainable solar-driven desalination and purification. Separation and Purification Technology, 322, 124312. https://doi.org/10.1016/j.seppur.2023.124312
  8. Dumka, P., Sharma, A., Kushwah, Y., Raghav, A. S., & Mishra, D. R. (2019). Performance evaluation of single slope solar still augmented with sand-filled cotton bags. Journal of Energy Storage, 25, 100888. https://doi.org/10.1016/j.est.2019.100888
  9. El-Dessouky, H. T., & Ettouney, H. M. (2002). Preface. Fundamentals of Salt Water Desalination, VII–X. https://doi.org/10.1016/b978-044450810-2/50001-4
  10. Fath, H. E. S., El-Samanoudy, M., Fahmy, K., & Hassabou, A. (2003). Thermal-economic analysis and comparison between pyramid-shaped and single-slope solar still configurations. Desalination, 159(1), 69–79. https://doi.org/10.1016/s0011-9164(03)90046-4
  11. Gad, H. E., Shams El-Din, Sh., Hussien, A. A., & Ramzy, Kh. (2015). Thermal analysis of a conical solar still performance: An experimental study. Solar Energy, 122, 900–909. https://doi.org/10.1016/j.solener.2015.10.016
  12. Gnanadason, M. K., Kumar, P. S., Wilson, V. H., & Kumaravel, A. (2014). Productivity enhancement of a-single basin solar still. Desalination and Water Treatment, 55(8), 1998–2008. https://doi.org/10.1080/19443994.2014.930701
  13. Gnanaraj, S. J. P., & Velmurugan, V. (2019). An experimental study on the efficacy of modifications in enhancing the performance of single basin double slope solar still. Desalination, 467, 12–28. https://doi.org/10.1016/j.desal.2019.05.015
  14. Haddad, Z., Chaker, A., & Rahmani, A. (2017). Improving the basin type solar still performances using a vertical rotating wick. Desalination, 418, 71–78. https://doi.org/10.1016/j.desal.2017.05.030
  15. Hamdan, M. A., Musa, A. M., & Jubran, B. A. (1999). Performance of solar still under Jordanian climate. Energy Conversion and Management, 40(5), 495–503. https://doi.org/10.1016/s0196-8904(98)00134-4
  16. Hansen, R. S., Narayanan, C. S., & Murugavel, K. K. (2015). Performance analysis on inclined solar still with different new wick materials and wire mesh. Desalination, 358, 1–8. https://doi.org/10.1016/j.desal.2014.12.006
  17. He, F., You, H., Liu, X., Shen, X., Zhang, J., & Wang, Z. (2023). Interfacial-heating solar desalination of high-salinity brine: Recent progress on salt management and water production. Chemical Engineering Journal, 470, 144332. https://doi.org/10.1016/j.cej.2023.144332
  18. Hu, Z., Wang, J., Huo, E., & Zhang, C. (2023). Investigation of a distillation desalination system driven by solar and ocean thermal energy. Desalination, 559, 116649. https://doi.org/10.1016/j.desal.2023.116649
  19. Ismail, B. I. (2009). Design and performance of a transportable hemispherical solar still. Renewable Energy, 34(1), 145–150. https://doi.org/10.1016/j.renene.2008.03.013
  20. Issaq, S. Z., Talal, S. K., & Azooz, A. A. (2023). Experimentation on enhancement of solar still performance. International Journal of Renewable Energy Development, 12(4), 691–701. https://doi.org/10.14710/ijred.2023.53239
  21. Jakhrani, A. Q., Larik, T. A., Jatoi, A. R., & Mukwana, K. C. (2019). Performance analysis of a fabricated line focusing concentrated solar distillation system. International Journal of Renewable Energy Development, 8(2), 185. https://doi.org/10.14710/ijred.8.2.185-192
  22. Jani, H. K., & Modi, K. V. (2019). Experimental performance evaluation of single basin dual slope solar still with circular and square cross-sectional hollow fins. Solar Energy, 179, 186–194. https://doi.org/10.1016/j.solener.2018.12.054
  23. Kabeel, A. E. (2009). Performance of solar still with a concave wick evaporation surface. Energy, 34(10), 1504–1509. https://doi.org/10.1016/j.energy.2009.06.050
  24. Kabeel, A. E., & Abdelgaied, M. (2020). Enhancement of pyramid-shaped solar stills performance using a high thermal conductivity absorber plate and cooling the glass cover. Renewable Energy, 146, 769–775. https://doi.org/10.1016/j.renene.2019.07.020
  25. Le, T. H., Pham, M. T., Hadiyanto, H., Pham, V. V., & Hoang, A. T. (2021). Influence of Various Basin Types on Performance of Passive Solar Still: A Review. International Journal of Renewable Energy Development, 10(4), 789–802. https://doi.org/10.14710/ijred.2021.38394
  26. Modi, K. V., & Modi, J. G. (2019). Performance of single-slope double-basin solar stills with small pile of wick materials. Applied Thermal Engineering, 149, 723–730. https://doi.org/10.1016/j.applthermaleng.2018.12.071
  27. Munisamy, T. K., Mohan, A., & Veeramanikandan, M. (2017). Experimental investigation of tilted wick solar still using fabrics. Australian Journal of Mechanical Engineering, 17(3), 185–190. https://doi.org/10.1080/14484846.2017.1334306
  28. Murugavel, K. K., & Srithar, K. (2011). Performance study on basin type double slope solar still with different wick materials and minimum mass of water. Renewable Energy, 36(2), 612–620. https://doi.org/10.1016/j.renene.2010.08.009
  29. Murugavel, K. K., Sivakumar, S., Riaz Ahamed, J., Chockalingam, Kn. K. S. K., & Srithar, K. (2010). Single basin double slope solar still with minimum basin depth and energy storing materials. Applied Energy, 87(2), 514–523. https://doi.org/10.1016/j.apenergy.2009.07.023
  30. Nagarajan, P. K., El-Agouz, S. A., DG, H. S., Edwin, M., Madhu, B., Sathyamurthy, R., & Bharathwaaj, R. (2017). Analysis of an inclined solar still with baffles for improving the yield of fresh water. Process Safety and Environmental Protection, 105, 326-337. https://doi.org/10.1016/j.psep.2016.11.018
  31. Omara, Z. M., Kabeel, A. E., & Essa, F. A. (2015). Effect of using nanofluids and providing vacuum on the yield of corrugated wick solar still. Energy Conversion and Management, 103, 965–972. https://doi.org/10.1016/j.enconman.2015.07.035
  32. Omara, Z. M., Kabeel, A. E., Abdullah, A. S., & Essa, F. A. (2016). Experimental investigation of corrugated absorber solar still with wick and reflectors. Desalination, 381, 111–116. https://doi.org/10.1016/j.desal.2015.12.001
  33. Pal, P., Dev, R., Singh, D., & Ahsan, A. (2018). Energy matrices, exergoeconomic and enviroeconomic analysis of modified multi–wick basin type double slope solar still. Desalination, 447, 55–73. https://doi.org/10.1016/j.desal.2018.09.006
  34. Panchal, H., & Sathyamurthy, R. (2017). Experimental analysis of single-basin solar still with porous fins. International Journal of Ambient Energy, 41(5), 563–569. https://doi.org/10.1080/01430750.2017.1360206
  35. Sathyamurthy, R., Nagarajan, P. K., El-Agouz, S. A., Jaiganesh, V., & Sathish Khanna, P. (2015). Experimental investigation on a semi-circular trough-absorber solar still with baffles for fresh water production. Energy Conversion and Management, 97, 235–242. https://doi.org/10.1016/j.enconman.2015.03.052
  36. Sathyamurthy, R., Nagarajan, P. K., Subramani, J., Vijayakumar, D., & Mohammed Ashraf Ali, K. (2014). Effect of Water Mass on Triangular Pyramid Solar Still Using Phase Change Material as Storage Medium. Energy Procedia, 61, 2224–2228. https://doi.org/10.1016/j.egypro.2014.12.114
  37. Suneesh, P. U., Jayaprakash, R., Kumar, S., & Denkenberger, D. (2017). Performance analysis of “V”-type solar still with tilt wick and effect of wick coverage. Cogent Engineering, 4(1), 1419791. https://doi.org/10.1080/23311916.2017.1419791
  38. Tanaka, H., & Nakatake, Y. (2009). One step azimuth tracking tilted-wick solar still with a vertical flat plate reflector. Desalination, 235(1–3), 1–8. https://doi.org/10.1016/j.desal.2008.01.011
  39. Toghraie, D., Karami, A., Afrand, M., & Karimipour, A. (2018). Effects of geometric parameters on the performance of solar chimney power plants. Energy, 162, 1052–1061. https://doi.org/10.1016/j.energy.2018.08.086
  40. Velmurugan, V., Gopalakrishnan, M., Raghu, R., & Srithar, K. (2008). Single basin solar still with fin for enhancing productivity. Energy Conversion and Management, 49(10), 2602–2608. https://doi.org/10.1016/j.enconman.2008.05.010
  41. Yarramsetty, N., Sharma, N., & Narayana, M. L. (2021). Experimental investigation of a pyramid type solar still with porous material: productivity assessment. World Journal of Engineering, 20(1), 178–185. https://doi.org/10.1108/wje-02-2021-0096
  42. Yuvaperiyasamy, M., Senthilkumar, N., & Deepanraj, B. (2023). Experimental and theoretical analysis of solar still with solar pond for enhancing the performance of sea water desalination. Water Reuse. https://doi.org/10.2166/wrd.2023.102

Last update:

  1. Fuzzy logic-based prediction and parametric optimizing using particle swarm optimization for performance improvement in pyramid solar still

    N. Senthilkumar, M. Yuvaperiyasamy, B. Deepanraj, K. Sabari. Water Science & Technology, 90 (4), 2024. doi: 10.2166/wst.2024.277
  2. Experimental Investigation of Single Slope Solar Still by Varying Water Depth and with External Reflector

    Yuvaperiyasamy Mayilsamy, Senthilkumar Natarajan, Deepanraj Balakrishnan, Suresh Kumar Ramalingam, Arun Kumar Kalidass. Journal of Studies in Science and Engineering , 4 (1), 2024. doi: 10.53898/josse2024416
  3. Performance analysis of pyramid solar still with natural banana fibers and Kanche marbles

    N. Senthilkumar, M. Yuvaperiyasamy, B. Deepanraj, S. Kavitha. Interactions, 245 (1), 2024. doi: 10.1007/s10751-024-01999-7
  4. Application of Taguchi design to optimize the operational parameters of pyramid solar still integrated with TiO2 nanoparticles

    N Senthilkumar, M Yuvaperiyasamy, B Deepanraj. Engineering Research Express, 6 (4), 2024. doi: 10.1088/2631-8695/ad8b0f
  5. Optimizing the Productivity of Solar Water Desalination System Using Firefly Algorithm

    N. Senthilkumar, B. Deepanraj, L. Syam Sundar, N.T. Ravikumar. 2024 Third International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), 2024. doi: 10.1109/INCOS59338.2024.10527668

Last update: 2024-11-22 03:58:46

No citation recorded.