skip to main content

Flood Risk Analysis in Gajah Wong River, Yogyakarta City

1Departement Geography, Geography, Faculty of Geography, Universitas Gadjah Mada, The Special Region of Yogyakarta, 55281, Indonesia, Indonesia

2Magister Geography, Geography, Faculty of Geography, Universitas Gadjah Mada, The Special Region of Yogyakarta, 55281, Indonesia, Indonesia

Received: 21 Jun 2023; Revised: 1 Feb 2024; Accepted: 6 Mar 2024; Available online: 28 May 2024; Published: 7 Jun 2024.
Editor(s): Budi Warsito

Citation Format:
Abstract
Evaluation of flood events in an area is essential to minimize its impacts by conducting hydrological and hydraulic river modeling. In 2016 and 2022, the events led to the breach of the Gajah Wong River levee, causing the floodwater to overflow and inundate residential areas, reaching a height of 2 meters. This study aims to analyze the risks posed by the Gajah Wong River overflow, while also identifying the elements at risk due to the potential of flooding. The flood inundation scenario modeling using Hec-RAS requires input such as peak discharge, Digital Terrain Model (DTM), and Manning's coefficient. High-resolution aerial photo extraction is employed to generate DTM and identify buildings affected by flood inundation, in accordance with the flood modeling. The rational method is used to calculate the peak discharge, utilizing the maximum daily rainfall data from 2001 to 2021. The results show that there was a significant expansion of inundation that reached 4.826 m2 for the 2-year and 50-years flood return periods. However, in terms of the flood impact on buildings, an area of 30.350,68 m2 is affected for the 2-year return period, and it expands to 35.439,05 m2 for the 50-year flood.

Note: This article has supplementary file(s).

Fulltext View|Download |  Feedback on the revisions from the reviewers
Feedback on the revisions from the reviewers
Subject
Type Feedback on the revisions from the reviewers
  Download (14KB)    Indexing metadata
Keywords: Flood Modelling; HecRAS; Gajah Wong
Funding: Universitas Gadjah Mada

Article Metrics:

  1. Ardiansyah, A., & Sumunar, D. R. S. (2020). Flood Vulnerability Mapping Using Geographic Information System (GIS) in Gajah Wong Sub Watershed, Yogyakarta County Province. Geosfera Indonesia, 5(1), 47. https://doi.org/10.19184/geosi.v5i1.9959
  2. Asdak, C. (2014). Hidrologi Dan Pengelolaan Daerah Aliran Sungai (6th ed.). Gadjah Mada University Press
  3. Che, D., Liang, A., Li, X., & Ma, B. (2018). Remote Sensing Assessment of Safety Risk of Iron Tailings Pond Based on Runoff Coefficient. Sensors, 18
  4. Clark, M. P., Bierkens, M. F. P., Samaniego, L., Woods, R. A., Uijlenhoet, R., Bennett, K. E., Pauwels, V. R. N., Cai, X., Wood, A. W., & Peters-Lidard, C. D. (2017). The evolution of process-based hydrologic models: Historical challenges and the collective quest for physical realism. Hydrology and Earth System Sciences, 21(7), 3427–3440. https://doi.org/10.5194/hess-21-3427-2017
  5. Costabile, P., Costanzo, C., Ferraro, D., Macchione, F., & Petaccia, G. (2020). Performances of the new HEC-RAS version 5 for 2-D hydrodynamic-based rainfall-runoff simulations at basin scale: Comparison with a state-of-the art model. Water (Switzerland), 12(9). https://doi.org/10.3390/W12092326
  6. Darabi, H., Choubin, B., Rahmati, O., Torabi Haghighi, A., Pradhan, B., & Kløve, B. (2019). Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. Journal of Hydrology, 569, 142-154
  7. Dawson, R. J., Speight, L., Hall, J. W., Djordjevic, S., Savic, D., & Leandro, J. (2008). Attribution of flood risk in urban areas. Journal of Hydroinformatics, 10(4), 275–288. https://doi.org/10.2166/hydro.2008.054
  8. Edwards, P. J., Williard, K. W. J., & Schoonover, J. E. (2015). Fundamentals of Watershed Hydrology. Journal of Contemporary Water Research & Education, 154(1), 3–20. https://doi.org/10.1111/j.1936-704x.2015.03185.x
  9. Igović, L., Pamučar, D., Bajić, Z., & Drobnjak, S. (2017). Application of GIS-interval rough AHP methodology for flood hazard mapping in urban areas. Water (Switzerland), 9(6) doi: 10.3390/w9060360
  10. Lee, S., Kim, J.-., Jung, H. -., Lee, M. J., & Lee, S. (2017). Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomatics, Natural Hazards and Risk, 8(2), 1185-1203. doi: 10.1080/19475705.2017.1308971
  11. Papaioannou, G., Loukas, A., Vasiliades, L., & Aronica, G. (2016). Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach. National Hazards, 83(1). doi: https://doi.org/10.1007/s11069-016-2382-1
  12. Permatasari, R., Arwin, and Natakusumah, D.K. 2017. Pengaruh Perubahan Penggunaan Lahan terhadap Rezim Hidrologi DAS (Studi Kasus: DAS Komering). Jurnal Teknik Sipil. Vol 24(1):91-98
  13. Rahman A.Z. 2018. Kapasitas Daerah Banjarnegara Dalam Penanggulangan Bencana Alam Tanah Longsor. Semarang: Jurnal Ilmu Sosial, Vol 16, 2018
  14. Ramehiang1, I., Rombang2, J., Ratulangi, S., 2staf, M., Jurusan, P., Pertanian, B., Fakultas, M., Program, P., Ilmu, S., & Universitas, K. (n.d.). ANALISIS KOEFISIEN ALIRAN PERMUKAAN PADA TIGA TIPE PENGGUNAAN LAHAN di TANAH ANDISOL
  15. Sekaranom, A. B., Fianggoro, M., & Wicaksono, R. M. (2021). Spatial Analysis of Rainfall Return Period and Probable Maximum Precipitation over Central Java - Indonesia. IOP Conference Series: Earth and Environmental Science, 819(1). https://doi.org/10.1088/1755-1315/819/1/012090
  16. Suprayogi, S., & Werdiningsih. (2014). Pengelolaan Sumberdaya Air Untuk Mitigasi Bencana Keairan (Banjir-Kekeringan-Longsor). Pengelolaan Daerah Aliran Sungai (pp. 1–38). Gadjah Mada University Press
  17. Suprayogi, S., Widyastuti, M., Hadi, M. P., Christanto, N., Tivianton, T. A., Fadhilah, G. O., Rahmawati, L., & Fadlillah, L. N. (2022). Runoff Coefficient Analysis After Regional Development in Tambakbayan Watershed, Yogyakarta, Indonesia. Jurnal Ilmu Lingkungan, 20(2), 396–405. https:// doi.org/10.14710/jil.20.2.396-405
  18. Tehrany, M.S, Shabani, F., Neamah Jebur, M., Hong, H., Chen, W., & Xie, X. (2017). GIS- based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomatics, Natural Hazards and Risk,8(2), 1538- 1561. doi: 10.1080/19475705.2017.1362038
  19. Thanvisitthpon, N. (2017). “Impacts of repetitive floods and satisfaction with flood relief efforts: A case study of the flood prone districts in Thailand’s Ayutthaya province,” Clim. Risk Manag., vol. 18, pp. 5–20
  20. TribunJogja.com, 2021, Sungai Gajah Wong Meluap, 50 KK di Warungboto Kota Yogyakarta Terdampak Banjir (internet), (accessed on November 24, 2022)
  21. Yu, X., & Duffy, C. J. (2018). Watershed hydrology: Scientific advances and environmental assessments. In Water (Switzerland) (Vol. 10, Issue 3). MDPI AG. https://doi.org/10.3390/w10030288

Last update:

No citation recorded.

Last update: 2025-01-21 04:38:26

No citation recorded.