skip to main content

Sistematik Review: Perbandingan Penggunaan Kaolin dan Bentonit dalam Penelitian Remediasi Elektrokinetik untuk Penyisihan Logam Berat

Departemen Teknik Lingkungan, Fakultas Teknik, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Kampus Undip, Tembalang, Semarang, Jawa Tengah 50275, Indonesia

Open Access Copyright 2022 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Latar belakang: Perbedaan mekanisme remediasi elektrokinetik salah satunya disebabkan oleh distribusi gugus ≡SOH yang berbeda beda pada jenis lempung yang dapat mengontrol muatan permukaan lempung. Bentonit dan kaolin merupakan jenis lempung yang seringkali digunakan dalam penelitian remediasi elektrokinetik tanah terkontaminasi logam berat. Oleh karenanya, tujuan dari review jurnal ini adalah mengkaji perbandingan penggunaan kaolin dan bentonit dalam remediasi elektrokinetik tanah terkontaminasi logam berat, baik dalam publikasi penelitiannya, karakteristiknya dan pengaruhnya terhadap mekanisme remediasi elektrokinetik.

Metode: Metode yang digunakan dalam review jurnal ini adalah systematic literature review, yang terdiri dari tahap identifikasi kata kunci, screening dokumen terpublikasi dan pemilihan jurnal berdasarkan kriteria-kriteria tertentu. Data base yang digunakan berasal dari Scopus, Science Direct dan Springer. Dokumen yang telah terpilih selanjutnya dianalisis dan dibandingkan.

Hasil: Sebanyak 92% dari dokumen terpilih menggunakan kaolin dalam peneltian EKR, sedangkan 8% lainnya menggunakan bentonit. Berdasarkan karakteristiknya, bentonit memiliki daya adsorbsi yang lebih tinggi dari kaolin, namun, memiliki efisiensi penyisihan yang lebih rendah dari kaolin. Dalam pengaruhnya terhadap mekanisme remediasi elektrokinetik, arah aliran EOF kaolin maupun bentonit pada umumnya menuju katoda, namun bentonit dapat menyerap elektrolit lebih banyak dari kaolin, sehingga memiliki kadar air yang lebih tinggi. Sedangkan untuk konsumsi energi, remediasi elektrokinetik pada kaolin memerlukan energi yang lebih rendah dari bentonit.

Simpulan: Bentonit dan kaolin memiliki perbedaan karakteristik pada kapasitas adsorbsi, efisiensi penyisihan logam berat, dan konsumsi energi. Meskipun arah aliran EOF pada bentonit dan kaolin sama, namun kapasitas penyerapan elektrolit pada bentonit lebih besar dari kaolin.

 

ABSTRACT

Title: Research Study on the Use of Kaolin and Bentonite in Electrokinetic Remediation for Heavy Metal Removal

Background: One of the differences in the electrokinetic remediation mechanism is caused by the distribution of different SOH groups on the type of clay that can control the surface charge of the clay. Bentonite and kaolin are types of clay that are often used in the study of electrokinetic remediation of heavy metal contaminated soils. Therefore, the purpose of this journal review is to compare the use of kaolin and bentonite in the electrokinetic remediation of heavy metal contaminated soils, both in their research publications, their characteristics and their effect on the electrokinetic remediation mechanism.

 

Method: The method used in this journal review is a systematic literature review consisting of keyword identification, screening published documents and selecting journals based on certain criteria. The database used comes from Scopus, Science Direct and Springer. The selected documents are then analyzed and compared.

Result: As many as 92% of the selected documents used kaolin in the EKR study, while 8% used bentonite. Based on its characteristics, bentonite has a higher adsorption capacity than kaolin. However, it has a lower removal efficiency than kaolin. In its influence on the electrokinetic remediation mechanism, the flow direction of kaolin and bentonite EOF is generally towards the cathode, but bentonite can absorb more electrolytes than kaolin, so it has higher water content. As for energy consumption, electrokinetic remediation on kaolin requires lower energy than bentonite.

Conclusion: Bentonite and kaolin have different characteristics in adsorption capacity, heavy metal removal efficiency, and energy consumption. Although the direction of EOF flow in bentonite and kaolin is the same, the electrolyte absorption capacity of bentonite is greater than that of kaolin.

Note: This article has supplementary file(s).

Fulltext View|Download |  Turnitin
Turnitin
Subject
Type Turnitin
  Download (2MB)    Indexing metadata
 ES
Etichal Statement
Subject
Type ES
  Download (657KB)    Indexing metadata
 CTA
Copyright Transfer Agreement
Subject
Type CTA
  Download (217KB)    Indexing metadata
Keywords: remediasi elektrokinetik; logam berat; bentonite; kaolin

Article Metrics:

  1. Jafariesfad N, Geiker MR, Sangesland S. Electrokinetics application in concrete and well construction. Proceedings of the ASME 2020 30th International Conference on Ocean, Offshore and Arctic Engineering OMAE2020-18 275. 2020 Aug 3-7;1–12
  2. Wen D, Guo X, Fu R. Inhibition characteristics of the electrokinetic removal of inorganik contaminants from soil due to evolution of the acidic and alkaline fronts. Process Saf Environ Prot. 2021;155:343–5. https://doi.org/10.1016/j.psep.2021.09.030
  3. Hoor YQ, Au PI, Mubarak NM, Khalid M, Jagadish P, Walvekar R, et al. Surface force arising from adsorbed graphene oxide in kaolinite suspensions. Colloids Surf A. 2020;592:124592. https://doi.org/10.1016/j.colsurfa.2020.124592
  4. Mascia M, Vacca A, Palmas S. Effect of surface equilibria on the electrokinetic behaviour of Pb and Cd ions in kaolinite. J Chem Technol Biotechnol. 2015;90(7):1290–8. https://doi.org/10.1002/jctb.4435
  5. Wang Y, Han Z, Li A, Cui C. Enhanced electrokinetic remediation of heavy metals contaminated soil by biodegradable complexing agents. Environ Pollut. 2021;283:117111. https://doi.org/10.1016/j.envpol.2021.117111
  6. Raffa CM, Chiampo F. Remediation of metal/metaloid-polluted soils: a short review. Appl Sci. 2021;11: 4134. https://doi.org/10.3390/app11094134
  7. Teng D, Mao K, Ali W, Xu G, Huang G, Niazi NK, et al. Describing the toxicity and sources and the remediation technologies for mercury-contaminated soil. R. Soc. Chem. Adv. 2020;10(39):23221–32. https://doi.org/10.1039/D0RA01507E
  8. Okoli C. A guide to conducting a standalone systematic literature review. Commun Assoc Inf Syst. 2015;37(1):879–910. https://doi.org/10.17705/1CAIS.03743
  9. Mu’azu ND, Usman A, Jarrah N, Alagha O. Pulsed electrokinetic removal of chromium, mercury and cadmium from contaminated mixed clay soils. Soil Sediment Contam. 2016;25(7):757–75. https://doi.org/10.1080/15320383.2016.1213700
  10. Mu’azu ND, Jarrah N. Influence of bentonite proportion in natural clay on Pb2+ ions sorption: response surface methodology, kinetics and equilibrium studies. Soil Sediment Contam. 2017;26(7–8):691–708. https://doi.org/10.1080/15320383.2017.1405909
  11. Wan Y, Zhai J, Wang A, Han H, Shen M, Wen X. Environmental research on remediation of Cd-contaminated soil by electrokinetic remediation. Ekoloji. 2019;28(107):873–81
  12. Usman AK, Mu’azu ND, Lukman S, Essa MH, Bukhari AA, Al-Malack MH. Removal of lead and copper from contaminated mixed clay soils using pulsed electrokinetics. Soil Sediment Contam. 2020; 465-480. https://doi.org/10.1080/15320383.2020.1743969
  13. Ammami MT, Benamar A, Wang H, Bailleul C, Legras M, Le Derf F, et al. Simultaneous electrokinetic removal of polycyclic aromatic hydrocarbons and metals from a sediment using mixed enhancing agents. Int J Environ Sci Technol. 2014;11(7):1801–16. https://doi.org/10.1007/s13762-013-0395-9
  14. Behrouzinia S, Ahmadi H, Abbasi N, Javadi AA. Insights into enhanced electrokinetic remediation of copper-contaminated soil using a novel conductive membrane based on nanoparticles. Environ Geochem Health. 2022;44(3):1015–32. https://doi.org/10.1007/s10653-021-01006-w
  15. Cameselle C, Gouveia S, Cabo A. Analysis and optimization of Mn removal from contaminated solid matrixes by electrokinetic remediation. Int J Environ Res Public Health. 2020;17(6):1820. https://doi.org/10.3390/ijerph17061820
  16. Ghobadi R, Altaee A, Zhou JL, McLean P, Yadav S. Copper removal from contaminated soil through electrokinetic process with reactive filter media. Chemosphere. 2020;252:126607. https://doi.org/10.1016/j.chemosphere.2020.126607
  17. Hassan I, Mohamedelhassan E. Efficacy of electrokinetics in remediating soft clay slurries contaminated with cadmium and copper. Water Air Soil Pollut. 2021;232(7):289. https://doi.org/10.1007/s11270-021-05250-9
  18. Hassan I, Mohamedelhassan E, Yanful EK. Solar powered electrokinetic remediation of Cu polluted soil using a novel anode configuration. Electrochim Acta. 2015;181:58–67. https://doi.org/10.1016/j.electacta.2015.02.216
  19. Kim D, Han J. Remediation of multiply contaminated ground via permeable reactive barrier and electrokinetic using recyclable food scrap ash (FSA). Appl Sci. 2020;10(4):1194. https://doi.org/10.3390/app10041194
  20. Lee S, Yun JM, Lee JY, Hong G, Kim JS, Kim D, et al. The remediation characteristics of heavy metals (copper and lead) on applying recycled food waste ash and electrokinetic remediation techniques. Appl Sci. 2021;11(16):7437. https://doi.org/10.3390/app11167437
  21. Li C, Hou H, Yang J, Liang S, Shi Y, Guan R, et al. Comparison of electrokinetic remediation on lead-contaminated kaolinite and natural soils. Clean - Soil, Air, Water. 2019;47(4):1800337. https://doi.org/10.1002/clen.201800337
  22. Li G, Liu J, Zhang J. Experimental study on electrokinetic remediation of Pb-contaminated kaolinite. J IOP Conf Ser Earth Environ Sci. 2020;467(1):012181. https://doi.org/10.1088/1755-1315/467/1/012181
  23. Naidu R, Sreedaran BR, Smith E. Electroremediation of lead-contaminated kaolinite using cation selective membrane and different electrolyte solutions. Water Air Soil Pollut. 2013;224(12):1708. https://doi.org/10.1007/s11270-013-1708-9
  24. Nasiri A, Jamshidi-Zanjani A, Khodadadi Darban A. Application of enhanced electrokinetic approach to remediate Cr-contaminated soil: effect of chelating agents and permeable reactive barrier. Environ Pollut. 2020;266:115197. https://doi.org/10.1016/j.envpol.2020.115197
  25. Saeedi M, Li LY, Moradi Gharehtapeh A. Effect of alternative electrolytes on enhanced electrokinetic remediation of hexavalent chromium in clayey soil. Int J Environ Res. 2013;7(1):39–50
  26. Abou-Shady A, Eissa D, Abdelmottaleb O, Hegab R. New approaches to remediate heavy metals containing polluted soil via improved PCPSS. J Environ Chem Eng. 2018;6(1):1322–32. https://doi.org/10.1016/j.jece.2018.01.066
  27. Kim SO, Jeong JY, Lee WC, Yun ST, Jo HY. Electrokinetic remediation of heavy metal-contaminated soils: performance comparison between one- and two-dimensional electrode configurations. J Soils Sediments. 2021;21(8):2755–69. https://doi.org/10.1007/s11368-020-02803-z
  28. Suzuki T, Moribe M, Okabe Y, Niinae M. A mechanistic study of arsenate removal from artificially contaminated clay soils by electrokinetic remediation. J Hazard Mater. 2013;254–255(1):310–7. https://doi.org/10.1016/j.jhazmat.2013.04.013
  29. Suzuki T, Kawai K, Moribe M, Niinae M. Recovery of Cr as Cr(III) from Cr(VI)-contaminated kaolinite clay by electrokinetics coupled with a permeable reactive barrier. J Hazard Mater. 2014;278(3):297–303. https://doi.org/10.1016/j.jhazmat.2014.05.086
  30. Wang Y, Li A, Ren B, Han Z, Lin J, Zhang Q, et al. Mechanistic insights into soil heavy metals desorption by biodegradable polyelectrolyte under electric field. Environ Pollut. 2022;292:118277. https://doi.org/10.1016/j.envpol.2021.118277
  31. Wu J, Zhang J, Xiao C. Focus on factors affecting pH, flow of Cr and transformation between Cr(VI) and Cr(III) in the soil with dipfferent electrolytes. Electrochim Acta. 2016;211:652–62. https://doi.org/10.1016/j.electacta.2016.06.048
  32. Xu L, Yu C, Mao Y, Zong Y, Zhang B, Chu H, et al. Can flow-electrode capacitive deionization become a new in-situ soil remediation technology for heavy metal removal ?. J Hazard Mater.2021;402:123568. https://doi.org/10.1016/j.jhazmat.2020.123568
  33. Yuan L, Xu X, Li H, Wang N, Guo N, Yu H. Development of novel assisting agents for the electrokinetic remediation of heavy metal-contaminated kaolin. Electrochim Acta. 2016;218:140–8. https://doi.org/10.1016/j.electacta.2016.09.121
  34. Yuan L, Li H, Xu X, Zhang J, Wang N, Yu H. Electrokinetic remediation of heavy metals contaminated kaolin by a CNT-covered polyethylene terephthalate yarn cathode. Electrochim Acta. 2016;213:140-7. https://doi.org/10.1016/j.electacta.2016.07.081
  35. Zhang Y, Boparai HK, Wang J, Sleep BE. Effect of low permeability zone location on remediation of Cr(VI)-contaminated media by electrokinetics combined with a modified-zeolite barrier. J Hazard Mater. 2022;426:127785. https://doi.org/10.1016/j.jhazmat.2021.127785
  36. Zhou H, Xu J, Lv S, Liu Z, Liu W. Removal of cadmium in contaminated kaolin by new-style electrokinetic remediation using array electrodes coupled with permeable reactive barrier. Sep Purif Technol. 2020;239(516):116544. https://doi.org/10.1016/j.seppur.2020.116544
  37. Zhou H, Liu Z, Li X, Xu J. Remediation of lead (II)-contaminated soil using electrokinetics assisted by permeable reactive barrier with different filling materials. J Hazard Mater. 2021;408:124885. https://doi.org/10.1016/j.jhazmat.2020.124885
  38. Azhar ATS, Nabila ATA, Nurshuhaila MS, Shaylinda MZN, Azim MAM. Electromigration of contaminated soil by electro-bioremediation technique. IOP Conf Ser Mater Sci Eng. 2016;136(1):012023. https://doi.org/10.1088/1757-899X/136/1/012023
  39. Cameselle C, Reddy KR. Effects of periodic electric potential and electrolyte recirculation on electrochemical remediation of contaminant mixtures in clayey soils. Water Air Soil Pollut. 2013;224(8):1636. https://doi.org/10.1007/s11270-013-1636-8
  40. Chakraborty R, Ghosh A, Adak A, Chatterjee A. Electrokinetic extraction of Cr(VI) from contaminated kaolin numerical and experimental studies. Indian Chem Soc. 2020;97(4):533–9
  41. Chen F, Xing JH, Cao ZW. Study on the electrokinetic remediation technology of Cr(IV) polluted soil. Water Air Soil Pollut. 2013;726–731:1751–4. https://doi.org/10.4028/www.scientific.net/AMR.726-731.1751
  42. Fansheng M, Lingli L, Juling W, Yeyao W. Effect of pH control at the cathode for the electrokinetic remediation efficiency. Proc 2013 3rd Int Conf Intell Syst Des Eng Appl ISDEA 2013. 2013;646–50. https://doi.org/10.1109/ISDEA.2012.155
  43. Li D, Niu YY, Fan M, Xu DL, Xu P. Focusing phenomenon caused by soil conductance heterogeneity in the electrokinetic remediation of chromium (VI)-contaminated soil. Sep Purif Technol. 2013;120:52–8. https://doi.org/10.1016/j.seppur.2013.09.018
  44. Saberi N, Aghababaei M, Ostovar M, Mehrnahad H. Simultaneous removal of polycyclic aromatic hydrocarbon and heavy metals from an artificial clayey soil by enhanced electrokinetic method. J Environ Manage. 2018;217:897–905. https://doi.org/10.1016/j.jenvman.2018.03.125
  45. Sun Z, Tan W, Yao K. Laboratory experiments on cyclic and progressive electrokinetic remediation and electroosmotic consolidation for Zn-contaminated soft clay. Arab J Geosci. 2021;14(20):2113. https://doi.org/10.1007/s12517-021-08520-2
  46. Wu J, Xiao C, Wu H. Exploring electrode capture potential in different Cr-contaminated soils with enhanced electrolytes based on chemical fractionation. Sep Purif Technol. 2018;197:54–62. https://doi.org/10.1016/j.seppur.2017.12.047
  47. Ait Ahmed O. The removal efficiency of lead from contaminated soil: modeling of cations and anions migration during the electrokinetic treatment. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng. 2020;55(10):1218–32. https://doi.org/10.1080/10934529.2020.1785781
  48. Bhargavi VLN, Sudha PN. Removal of heavy metal ions from soil by electrokinetic assisted phytoremediation method. Int J ChemTech Res. 2015;8(5):192–202
  49. Jeon EK, Jung JM, Ryu SR, Baek K. In situ field application of electrokinetic remediation for an As-, Cu-, and Pb-contaminated rice paddy site using parallel electrode configuration. Environ Sci Pollut Res. 2015;22(20):15763–71. https://doi.org/10.1007/s11356-015-4765-3
  50. Putra RS, Amalia AI, Jannah NZ. Assessing the effect of weak and strong acids as electrolytes in the removal of cesium by soil electrokinetic remediation. Indones J Chem. 2021;21(1):118–27. https://doi.org/10.22146/ijc.53283
  51. Liu SH, Paul Wang H. Electrochemical remediation of copper-contaminated soils enhanced by ethylenediaminetetraacetic acid: An in-situ X-ray absorption spectroscopic study. Int J Electrochem Sci. 2013;8(4):4807–17
  52. Betremieux M, Mamindy-Pajany Y. Investigation of a biosurfactant-enhanced electrokinetic method and its effect on the potentially toxic trace elements in waterways sediments. Environ Technol. 2021. https://doi.org/10.1080/09593330.2021.1936202
  53. Wu J, Li Q, Lv Z. Regulating and intervening act of Cr chemical speciation effect on the electrokinetic removal in Cr contaminated soil in arid area. Sep Purif Technol. 2020;250:117167. https://doi.org/10.1016/j.seppur.2020.117167
  54. Hu L, Zhang L, Wu H. Experimental study of the effects of soil pH and ionic species on the electro-osmotic consolidation of kaolin. J Hazard Mater. 2019;368:885–93. https://doi.org/10.1016/j.jhazmat.2018.09.015
  55. Mu’azu ND. Evaluation of the influence of clay montmorillonite content on the aqueous uptake of lead and zinc. Water Environ Res. 2018;90(9):771–82. https://doi.org/10.2175/106143017X15131012153202
  56. Chen YG, Ye WM, Yang XM, Deng FY, He Y. Effect of contact time, pH, and ionic strength on Cd(II) adsorption from aqueous solution onto bentonite from Gaomiaozi, China. Environ Earth Sci. 2011;64(2):329–36. https://doi.org/10.1007/s12665-010-0850-6
  57. Daniel Tjandra, Paravita Sri Wulandari. Pengaruh elektrokinetik terhadap daya dukung pondasi tiang di lempung marina. Civ Eng Dimens. 2006;8(1):15–9

Last update:

No citation recorded.

Last update: 2024-11-19 07:58:41

No citation recorded.