Pembuatan Elektrolit Padat KMn2-xMgxO4 dengan Variasi Konsentrasi Larutan Kalium Asetat

Cipto Harjono -  Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia
Linda Suyati -  Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia
*Rahmad Nuryanto -  Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia
Published: 1 Aug 2011.
Open Access Copyright 2011 Jurnal Kimia Sains dan Aplikasi
License URL: http://creativecommons.org/licenses/by-sa/4.0/
Citation Format:
Article Info
Section: Research Articles
Language: ID
Full Text:
Statistics: 58 68
Abstract
Proses pembuatan elektolit padat KMn2-xMgxO4 dengan variasi konsentrasi larutan kalium asetat telah dilakukan. Kalium sebagai ion logam dalam elektrolit padat berfungsi sebagai penghasil energi dengan proses elektrolisis sehingga perlu ditinjau pengaruh perubahan konsentrasi terhadap struktur dan daya hantar (konduktivitas). Penelitian ini menggunakan pemanasan secara bertahap dan metode sol-gel yaitu dengan mencampurkan larutan CH3COOK 0,1-0,5M, Mg(CH3COO)2 0,3M, Mn(CH3COO)2 dan C6H8O7 0,3M dengan pengadukan disertai pemanasan suhu 80°C, pengeringan pada 175°C, dan kalsinasi 650°C. Peningkatan konsentrasi mengakibatkan penurunan konduktivitas yaitu pada konsentrasi 0,1 M sebesar 36,90 S/m menjadi 13,75 S/m pada konsentrasi 0,5 M. Hasil FTIR menunjukkan adanya puncak 3332,99 cm-1dan 3170,97 cm-1 (K-O-Mn bending), 594,08 dan 478,35 cm-1 (Mg-O stretching), 1450,47 dan 1404,18 cm-1 (K-O stretching). Hasil XRD menunjukkan bahwa semua produk dalam bentuk kristalin dan struktur yang terbentuk adalah KMn1,7Mg0,3O4
Keywords
Kalium asetat; Elektrolit padat; Konduktivitas; FTIR; XRD

Article Metrics:

  1. Vladimir S Bagotsky, Fundamentals of electrochemistry, John Wiley & Sons, 2005.
  2. Brian Russel Einsla, High temperature polymers for proton exchange membrane fuel cells, Virginia Tech,
  3. Patrick E Trapa, You-Yeon Won, Simon C Mui, Elsa A Olivetti, Biying Huang, Donald R Sadoway, Anne M Mayes, Steven Dallek, Rubbery graft copolymer electrolytes for solid-state, thin-film lithium batteries, Journal of the Electrochemical Society, 152, 1, (2005) A1-A5
  4. Steven E. Bullock, Peter Kofinas, Nanoscale battery materials based on the self-assembly of block copolymers, Journal of Power Sources, 132, 1, (2004) 256-260 http://dx.doi.org/10.1016/j.jpowsour.2003.12.045
  5. Yang-Kook Sun, Dong-Won Kim, Sung-Ho Jin, Yoo-Eup Hyung, Sung-In Moon, Dong-Kyu Park, Synthesis and cycling behavior of LiMn2O4 cathode materials prepared by glycine-assisted sol-gel method for lithium secondary batteries, Korean Journal of Chemical Engineering, 15, 1, (1998) 64-70 http://dx.doi.org/10.1007/bf02705307
  6. Do Kyung Kim, P Muralidharan, Hyun-Wook Lee, Riccardo Ruffo, Yuan Yang, Candace K Chan, Hailin Peng, Robert A Huggins, Yi Cui, Spinel LiMn2O4 nanorods as lithium ion battery cathodes, Nano Letters, 8, 11, (2008) 3948-3952 http://dx.doi.org/10.1021/nl8024328
  7. Manickam Minakshi Sundaram, Electrochemistry of cathode materials in aqueous lithium hydroxide electrolyte, Murdoch University, Western Australia
  8. Ying-Shing Shiao, Ding-Tsair Su, Jui-Liang Yang, Rong-Wen Hung, Electrochemistry theorem based state-of-charge estimation of the lead acid batteries for electric vehicles, WSEAS Transactions on Systems, 7, 10, (2008) 1092-1103
  9. K Suryakala, G Paruthimal Kalaignan, T Vasudevan, Synthesis and electrochemical improvement of nanocrystalline LiMn2-xMgxO4 powder using sol-gel method, International Journal of Electrochemical Science, 1, 7, (2006) 372-378
  10. Tsutomu Minami, Solid state ionics for batteries, Springer Science & Business Media, 2006.
  11. Lesley E Smart, Elaine A Moore, Solid state chemistry: an introduction, CRC press, 2012.