skip to main content

In Silico Screening Anticancer of Six Triterpenoids toward miR-494 and TNF-α Targets

Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia

Received: 8 Dec 2019; Revised: 2 Apr 2020; Accepted: 7 Apr 2020; Published: 30 Apr 2020.
Open Access Copyright 2020 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Hepatocellular carcinoma (HCC) accounts for up to 90% of all primary liver cancers worldwide. Cinobufagin is recognized to inhibit miR-494 as the HCC target. Increased expression of TNF-α results in an inadequate response to liver anticancer drugs. The models in this study were cinobufagin, cycloartenol, and ethyl acetate fractions of Ganoderma lucidum, 2–5. Seven docking targets in this study were Akt, ERK1, ERK2, PI3K, TNF-α, TNFR1, and TNFR2. Cycloartenol and compound 4 comply with Veber’s rules, Lipinski’s rule of 5, and demonstrate moderate toxicity. The action implies a potential docking target since it produces bond affinities with the compound 2–5 that agree with the IC50 in the literature, which is based on in vitro experiments. Akt as a receptor target is AZD5363. Cycloartenol shows a low ability to inhibit Akt. Conversely, compound 4 inhibits the Akt better than that of cycloartenol, although it is not as good as cinobufagin and AZD5363. Therefore, compound 4, a triterpenoid with a basic framework of lanostane has the potential to be an anticancer candidate for the liver.

Fulltext View|Download
Keywords: Akt; cycloartenol; Ganoderma lucidum; hepatocellular carcinoma; triterpenoids
Funding: Department of Chemistry, FMIPA, IPB University

Article Metrics:

  1. Rebecca L. Siegel, Kimberly D. Miller and Ahmedin Jemal, Cancer statistics, 2017, CA: A Cancer Journal for Clinicians, 67, 1, (2017), 7-30 https://doi.org/10.3322/caac.21387
  2. Augusto Villanueva, Beatriz Minguez, Alejandro Forner, Maria Reig and Josep M. Llovet, Hepatocellular Carcinoma: Novel Molecular Approaches for Diagnosis, Prognosis, and Therapy, Annual Review of Medicine, 61, 1, (2010), 317-328 https://doi.org/10.1146/annurev.med.080608.100623
  3. Hashem B. El-Serag, Jorge A. Marrero, Lenhard Rudolph and K. Rajender Reddy, Diagnosis and Treatment of Hepatocellular Carcinoma, Gastroenterology, 134, 6, (2008), 1752-1763 https://doi.org/10.1053/j.gastro.2008.02.090
  4. Melanie Thomas, Molecular targeted therapy for hepatocellular carcinoma, Journal of Gastroenterology, 44, 19, (2009), 136-141 https://doi.org/10.1007/s00535-008-2252-z
  5. Chunsheng Li, Yi Feng, George Coukos and Lin Zhang, Therapeutic MicroRNA Strategies in Human Cancer, The AAPS Journal, 11, 4, (2009), 747 https://doi.org/10.1208/s12248-009-9145-9
  6. Dirk Brenner, Heiko Blaser and Tak W. Mak, Regulation of tumour necrosis factor signalling: live or let die, Nature Reviews Immunology, 15, 6, (2015), 362-374 https://doi.org/10.1038/nri3834
  7. Wenliang Tan, Xuan Luo, Wenda Li, Jinyi Zhong, Jun Cao, Sicong Zhu, Xianqing Chen, Rui Zhou, Changzhen Shang and Yajin Chen, TNF-α is a potential therapeutic target to overcome sorafenib resistance in hepatocellular carcinoma, EBioMedicine, 40, (2019), 446-456 https://doi.org/10.1016/j.ebiom.2018.12.047
  8. Zhaohong Wang, Jiao Wen, Jizong Zhang, Min Ye and Dean Guo, Simultaneous determination of four bufadienolides in human liver by high-performance liquid chromatography, Biomedical Chromatography, 18, 5, (2004), 318-322 https://doi.org/10.1002/bmc.322
  9. Fanghua Qi, Yoshinori Inagaki, Bo Gao, Xiaoyan Cui, Huanli Xu, Norihiro Kokudo, Anyuan Li and Wei Tang, Bufalin and cinobufagin induce apoptosis of human hepatocellular carcinoma cells via Fas- and mitochondria-mediated pathways, Cancer Science, 102, 5, (2011), 951-958 https://doi.org/10.1111/j.1349-7006.2011.01900.x
  10. Shaodan Chen, Xiangmin Li, Tianqiao Yong, Zhanggen Wang, Jiyan Su, Chunwei Jiao, Yizhen Xie and Burton B. Yang, Cytotoxic lanostane-type triterpenoids from the fruiting bodies of Ganoderma lucidum and their structure-activity relationships, Oncotarget, 8, 6, (2017), 10071-10084 https://doi.org/10.18632/oncotarget.14336
  11. Andi Nur Fitriani Abubakar, Suminar Setiati Achmadi and Irma Herawati Suparto, Triterpenoid of avocado (Persea americana) seed and its cytotoxic activity toward breast MCF-7 and liver HepG2 cancer cells, Asian Pacific Journal of Tropical Biomedicine, 7, 5, (2017), 397-400 https://doi.org/10.1016/j.apjtb.2017.01.010
  12. Hawwin Thoriqul Huda, Evaluasi Sikloartenol sebagai Kandidat Antikanker Hati Melalui Penghambatan ERK2 dengan Pendekatan In Silico, Undergraduate thesis, Departemen Kimia, Institut Pertanian Bogor, 2017, Bogor
  13. Molly M. He, Annemarie Stroustrup Smith, Johan D. Oslob, William M. Flanagan, Andrew C. Braisted, Adrian Whitty, Mark T. Cancilla, Jun Wang, Alexey A. Lugovskoy, Josh C. Yoburn, Amy D. Fung, Graham Farrington, John K. Eldredge, Eric S. Day, Leslie A. Cruz, Teresa G. Cachero, Stephan K. Miller, Jessica E. Friedman, Ingrid C. Choong and Brian C. Cunningham, Small-Molecule Inhibition of TNF-α, Science, 310, 5750, (2005), 1022-1025 https://doi.org/10.1126/science.1116304
  14. Matt Addie, Peter Ballard, David Buttar, Claire Crafter, Gordon Currie, Barry R. Davies, Judit Debreczeni, Hannah Dry, Philippa Dudley, Ryan Greenwood, Paul D. Johnson, Jason G. Kettle, Clare Lane, Gillian Lamont, Andrew Leach, Richard W. A. Luke, Jeff Morris, Donald Ogilvie, Ken Page, Martin Pass, Stuart Pearson and Linette Ruston, Discovery of 4-Amino-N-(1S)-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7H-pyrrolo2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide (AZD5363), an Orally Bioavailable, Potent Inhibitor of Akt Kinases, Journal of Medicinal Chemistry, 56, 5, (2013), 2059-2073 https://doi.org/10.1021/jm301762v
  15. Apirat Chaikuad, Eliana M C Tacconi, Jutta Zimmer, Yanke Liang, Nathanael S. Gray, Madalena Tarsounas and Stefan Knapp, A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics, Nature Chemical Biology, 10, 10, (2014), 853-860 https://doi.org/10.1038/nchembio.1629
  16. Timothy P. Heffron, Robert A. Heald, Chudi Ndubaku, BinQing Wei, Martin Augistin, Steven Do, Kyle Edgar, Charles Eigenbrot, Lori Friedman, Emanuela Gancia, Philip S. Jackson, Graham Jones, Aleksander Kolesnikov, Leslie B. Lee, John D. Lesnick, Cristina Lewis, Neville McLean, Mario Mörtl, Jim Nonomiya, Jodie Pang, Steve Price, Wei Wei Prior, Laurent Salphati, Steve Sideris, Steven T. Staben, Stefan Steinbacher, Vickie Tsui, Jeffrey Wallin, Deepak Sampath and Alan G. Olivero, The Rational Design of Selective Benzoxazepin Inhibitors of the α-Isoform of Phosphoinositide 3-Kinase Culminating in the Identification of (S)-2-((2-(1-Isopropyl-1H-1,2,4-triazol-5-yl)-5,6-dihydrobenzof]imidazo1,2-d]1,4]oxazepin-9-yl)oxy)propanamide (GDC-0326), Journal of Medicinal Chemistry, 59, 3, (2016), 985-1002 https://doi.org/10.1021/acs.jmedchem.5b01483
  17. Sérgio Filipe Sousa, Pedro Alexandrino Fernandes and Maria João Ramos, Protein–ligand docking: Current status and future challenges, Proteins: Structure, Function, and Bioinformatics, 65, 1, (2006), 15-26 https://doi.org/10.1002/prot.21082
  18. Sidra Rehman, Bushra Ijaz, Nighat Fatima, Syed Aun Muhammad and Sheikh Riazuddin, Therapeutic potential of Taraxacum officinale against HCV NS5B polymerase: In-vitro and In silico study, Biomedicine & Pharmacotherapy, 83, (2016), 881-891 https://doi.org/10.1016/j.biopha.2016.08.002
  19. Stefano Forli, Ruth Huey, Michael E. Pique, Michel F. Sanner, David S. Goodsell and Arthur J. Olson, Computational protein–ligand docking and virtual drug screening with the AutoDock suite, Nature Protocols, 11, 5, (2016), 905-919 https://doi.org/10.1038/nprot.2016.051
  20. Apeksha Shrivastava, Jintender Kumar, Mymoona Akhter, M. Mumtaz Alam and M. Shaqiquzamman, In-Silico Assessment of Various PDB Entries of Pfldh Enzyme for their Use in SBDD, Chemical Informatics, 2, 1, (2016), 1-9 https://doi.org/10.21767/2470-6973.100016
  21. A. Hodge and B. Sterner, What is a LD50 and LC50?, https://www.ccohs.ca/oshanswers/chemicals/ld50.html, access date. 22nd May 2019
  22. George Mihai Nitulescu, Maryna Van De Venter, Georgiana Nitulescu, Anca Ungurianu, Petras Juzenas, Qian Peng, Octavian Tudorel Olaru, Daniela Grădinaru, Aristides Tsatsakis and Dimitris Tsoukalas, The Akt pathway in oncology therapy and beyond, International journal of oncology, 53, 6, (2018), 2319-2331 https://doi.org/10.3892/ijo.2018.4597
  23. Margrith E. Mattmann, Sydney L. Stoops and Craig W. Lindsley, Inhibition of Akt with small molecules and biologics: historical perspective and current status of the patent landscape, Expert Opinion on Therapeutic Patents, 21, 9, (2011), 1309-1338 https://doi.org/10.1517/13543776.2011.587959
  24. Hiroshi Hirai, Hiroshi Sootome, Yoko Nakatsuru, Katsuyoshi Miyama, Shunsuke Taguchi, Kyoko Tsujioka, Yoko Ueno, Harold Hatch, Pradip K. Majumder, Bo-Sheng Pan and Hidehito Kotani, MK-2206, an Allosteric Akt Inhibitor, Enhances Antitumor Efficacy by Standard Chemotherapeutic Agents or Molecular Targeted Drugs In vitro and In vivo, Molecular Cancer Therapeutics, 9, 7, (2010), 1956 https://doi.org/10.1158/1535-7163.MCT-09-1012

Last update:

  1. An Insight of Co-Encapsulation Nigella sativa and Cosmos caudatus Kunth Extracts as Anti-Inflammatory Agent Through In Silico Study

    Nadiyah Zuhroh, Zubaidah Ningsih, Anna Safitri. Jurnal Kimia Sains dan Aplikasi, 24 (5), 2021. doi: 10.14710/jksa.24.5.152-160

Last update: 2024-12-26 23:53:05

No citation recorded.