Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
BibTex Citation Data :
@article{JKSA27122, author = {Vikra Zaini and Purwantiningsih Sugita and Luthfan Irfana and Suminar Achmadi}, title = {In Silico Screening Anticancer of Six Triterpenoids toward miR-494 and TNF-α Targets}, journal = {Jurnal Kimia Sains dan Aplikasi}, volume = {23}, number = {4}, year = {2020}, keywords = {Akt; cycloartenol; Ganoderma lucidum; hepatocellular carcinoma; triterpenoids}, abstract = { Hepatocellular carcinoma (HCC) accounts for up to 90% of all primary liver cancers worldwide. Cinobufagin is recognized to inhibit miR-494 as the HCC target. Increased expression of TNF-α results in an inadequate response to liver anticancer drugs. The models in this study were cinobufagin, cycloartenol, and ethyl acetate fractions of Ganoderma lucidum , 2–5 . Seven docking targets in this study were Akt, ERK1, ERK2, PI3K, TNF-α, TNFR1, and TNFR2. Cycloartenol and compound 4 comply with Veber’s rules, Lipinski’s rule of 5, and demonstrate moderate toxicity. The action implies a potential docking target since it produces bond affinities with the compound 2–5 that agree with the IC 50 in the literature, which is based on in vitro experiments. Akt as a receptor target is AZD5363. Cycloartenol shows a low ability to inhibit Akt. Conversely, compound 4 inhibits the Akt better than that of cycloartenol, although it is not as good as cinobufagin and AZD5363. Therefore, compound 4 , a triterpenoid with a basic framework of lanostane has the potential to be an anticancer candidate for the liver. }, issn = {2597-9914}, pages = {117--123} doi = {10.14710/jksa.23.4.117-123}, url = {https://ejournal.undip.ac.id/index.php/ksa/article/view/27122} }
Refworks Citation Data :
Hepatocellular carcinoma (HCC) accounts for up to 90% of all primary liver cancers worldwide. Cinobufagin is recognized to inhibit miR-494 as the HCC target. Increased expression of TNF-α results in an inadequate response to liver anticancer drugs. The models in this study were cinobufagin, cycloartenol, and ethyl acetate fractions of Ganoderma lucidum, 2–5. Seven docking targets in this study were Akt, ERK1, ERK2, PI3K, TNF-α, TNFR1, and TNFR2. Cycloartenol and compound 4 comply with Veber’s rules, Lipinski’s rule of 5, and demonstrate moderate toxicity. The action implies a potential docking target since it produces bond affinities with the compound 2–5 that agree with the IC50 in the literature, which is based on in vitro experiments. Akt as a receptor target is AZD5363. Cycloartenol shows a low ability to inhibit Akt. Conversely, compound 4 inhibits the Akt better than that of cycloartenol, although it is not as good as cinobufagin and AZD5363. Therefore, compound 4, a triterpenoid with a basic framework of lanostane has the potential to be an anticancer candidate for the liver.
Article Metrics:
Last update:
An Insight of Co-Encapsulation Nigella sativa and Cosmos caudatus Kunth Extracts as Anti-Inflammatory Agent Through In Silico Study
Last update: 2024-11-21 08:17:58
As an article writer, the author has the right to use their articles for various purposes, including use by institutions that employ authors or institutions that provide funding for research. Author rights are granted without special permission.
Author who publishes a paper at JKSA has the broad right to use their work for teaching and scientific purposes without the need to ask permission, including: used for (i) teaching in the author's class or institution, (ii) presentation at meetings or conferences and distributing copies to participants ; (iii) training conducted by the author or author's institution; (iv) distribution to colleagues for research use; (v) use in the compilation of subsequent authors' works; (vi) inclusion in a thesis or dissertation; (vi) reuse of part of the article in another work (with citation); (vii) preparation of derivative works (with citation); (viii) voluntary posting on open websites operated by authors or author institutions for scientific purposes (follow the CC BY-SA License).
Authors and readers can copy and redistribute material in any media or format, and mix, modify, and build material for any purpose but they must provide appropriate credit (provide article citation or content), providing links to the license, and indicate if there are changes.
The authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Jurnal Kimia Sains dan Aplikasi (JKSA). Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations.
Reproduce any part of this journal, its storage in the database or its transmission by all forms or media is permitted does not need for written permission from JKSA. However, it should be cited as an honor in academic manners
JKSA and the Chemistry Department of Diponegoro University and the Editor make every effort to ensure that there are no data, opinions, or false or misleading statements published in JKSA. However, the content of the article is the sole and exclusive responsibility of each author.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form - Indonesian] [Copyright Transfer Form - English]. The copyright form should be signed originally and send to the Editor in the form of printed letters, scanned documents sent via email or fax.
Adi Darmawan, Ph.D (Editor in Chief)
Editor in chief of Jurnal Kimia Sains dan Aplikasi (JKSA)
Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University
Visitor: View My Stats
Jurnal Kimia Sains dan Aplikasi is indexed in:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.