The Combination of Carbon Source and the Addition of Phenylacetic Acid (PAA) to Growth Medium Penicillium chrysogenum to Enhance of Penicillin (Pen G) Production

*Martha Sari scopus  -  Biotechnology Research Center, Indonesian Institute of Sciences, Indonesia
Dirayanti Dirayanti  -  Chemistry Department, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Indonesia
Eris Septiana scopus  -  Biotechnology Research Center, Indonesian Institute of Sciences, Indonesia
Bustanussalam Bustanussalam scopus  -  Biotechnology Research Center, Indonesian Institute of Sciences, Indonesia
Apon Zaenal Mustopa orcid scopus  -  Biotechnology Research Center, Indonesian Institute of Sciences, Indonesia
Received: 27 Apr 2020; Revised: 8 Aug 2020; Accepted: 25 Aug 2020; Published: 30 Sep 2020.
Open Access Copyright 2020 Jurnal Kimia Sains dan Aplikasi
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Article Info
Section: Research Articles
Language: EN
Statistics: 154 37
Abstract

The nutrition factor governs the growth and production of Penicillin G (Pen G) by Penicillium chrysogenum in a broth medium. Proper nutrition can improve Pen G antibiotic production. In this research, the optimal condition for Pen G production from P. chrysogenum in a standard culture medium and various carbon sources medium (glucose, lactose, maltose, and sucrose) were done for ten days. Phenylacetic Acid (PAA) precursor at 0.0 – 0.6 gL-1 (increment 0.1) was used to improve Pen G production. The Pen G was detected by HPLC, compared with the standard (Penicillin G Sodium Salt). The results showed that the PDB standard medium and lactose medium (150 rpm, at 30°C) produced 0.425 gL-1 and 0.107 gL-1 Pen G. Addition of 0.6 gL-1 PAA improved the Pen G production up to 0.045 gL-1 in the PDB medium, become the final concentration of 0.470 gL-1 and 2.460 gL-1 in the lactose medium, become the final concentration of 2.565 gL-1. The antibiotic’s activity against the pathogenic bacteria, i.e., B. subtilis, S. aureus, and S. typhi employing the disk diffusion method, has been done. The TLC method’s detection of the potential Pen G spots was conducted with ethyl acetate: distilled water: acetic acid (60:20:20) as the mobile phase. The Pen G extracts could inhibit the growth of all tested bacteria in Rf 0.65. This study informs the proper combination of carbon source and precursor effects and increases the bioproduction of Pen G from P. chrysogenum.

Keywords: Carbon source; PAA; P. chrysogenum; Pen G; Disk diffusion

Article Metrics:

  1. Hong Lu, Wen Xin Zou, Jun Cai Meng, Jun Hu, Ren Xiang Tan, New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua, Plant Science, 151, 1, (2000), 67-73 https://doi.org/10.1016/S0168-9452(99)00199-5
  2. Sana Fatima, Akhtar Rasool, Nasreena Sajjad, Eijaz Ahmed Bhat, Marlia Mohd Hanafiah, Mohammed Mahboob, Analysis and evaluation of penicillin production by using soil fungi, Biocatalysis and Agricultural Biotechnology, 21, (2019), 101330 https://doi.org/10.1016/j.bcab.2019.101330
  3. Stephen Goldrick, Barry Lennox, David Lovett, Keith Smith, Gary Montague, The Development of a Simulation to Address the Real Challenges Associated with Industrial Scale Penicillin Production, IFAC Proceedings Volumes, 46, 31, (2013), 24-29 https://doi.org/10.3182/20131216-3-IN-2044.00069
  4. Daniele Canzani, Fadi Aldeek, Penicillin G’s function, metabolites, allergy, and resistance, Journal of Nutrition and Human Health, 1, 1, (2017), 28-40 https://doi.org/10.35841/nutrition-human-health.1.1.28-40
  5. Sietske Grijseels, Jens Christian Nielsen, Jens Nielsen, Thomas Ostenfeld Larsen, Jens Christian Frisvad, Kristian Fog Nielsen, Rasmus John Normand Frandsen, Mhairi Workman, Physiological characterization of secondary metabolite producing Penicillium cell factories, Fungal Biology and Biotechnology, 4, 1, (2017), 8 https://doi.org/10.1186/s40694-017-0036-z
  6. Carlos Barreiro, Juan F. Martín, Carlos García-Estrada, Proteomics Shows New Faces for the Old Penicillin Producer Penicillium chrysogenum, Journal of Biomedicine and Biotechnology, 2012, (2012), 105109 https://doi.org/10.1155/2012/105109
  7. Saadah D. Rachman, Agus Safari, Fazli Fazl, Dian S. Kamara, Abubakar Sidik, Linar Z. Udin, Safri Ishmayana, Produksi Penisilin oleh Penicillium chrysogenum L112 dengan Variasi Kecepatan Agitasi pada Fermentor 1 L, Kartika: Jurnal Ilmiah Farmasi, 4, 2, (2016), 1-6 http://dx.doi.org/10.26874/kjif.v4i2.59
  8. Loknath Gidijala, Jan A. K. W. Kiel, Rutger D. Douma, Reza M. Seifar, Walter M. Van Gulik, Roel A. L. Bovenberg, Marten Veenhuis, Ida J. Van Der Klei, An engineered yeast efficiently secreting penicillin, PLoS One, 4, 12, (2009), e8317 https://doi.org/10.1371/journal.pone.0008317
  9. Fernando Guzmán-Chávez, Reto D. Zwahlen, Roel A. L. Bovenberg, Arnold J. M. Driessen, Engineering of the Filamentous Fungus Penicillium chrysogenum as Cell Factory for Natural Products, Frontiers in Microbiology, 9, 2768, (2018), 1-25 https://doi.org/10.3389/fmicb.2018.02768
  10. Mariya Lobanovska, Giulia Pilla, Penicillin’s discovery and antibiotic resistance: lessons for the future?, The Yale journal of biology and medicine, 90, 1, (2017), 135-145
  11. Ivan Pradipta, Elis Ronasih, Arrum Kartikawati, Hartanto Hartanto, Rizki Amelia, Ellin Febrina, Rizky Abdulah, Three years of antibacterial consumption in Indonesian Community Health Centers: The application of anatomical therapeutic chemical/defined daily doses and drug utilization 90% method to monitor antibacterial use, Journal of Family and Community Medicine, 22, 2, (2015), 101-105 https://doi.org/10.4103/2230-8229.155385
  12. Mohamed Hassan, Production, Immobilization and Industrial Uses of Penicillin G Acylase, International Journal of Current Research and Review, 8, 15, (2016), 11-22
  13. Sandra Ziemons, Katerina Koutsantas, Kordula Becker, Tim Dahlmann, Ulrich Kück, Penicillin production in industrial strain Penicillium chrysogenum P2niaD18 is not dependent on the copy number of biosynthesis genes, BMC Biotechnology, 17, 1, (2017), 16 https://doi.org/10.1186/s12896-017-0335-8
  14. Maryam Asnaashari, Mohammad Ali Tajick Ghanbary, Zahra Tazick, Optimization of penicillin G production by Penicillium chrysogenum, Annals of Biological Research, 3, 12, (2012), 5434-5440
  15. B. M. Onyegeme-Okerenta, V. I. Okochi, S. N. Chinedu, Penicillin Production by Penicillium chrysogenum PCL 501: Effect of UV Induced Mutation, The Internet Journal of Microbiology, 12, 1, (2013), 1629
  16. Ioannis Ketikidis, Christina N. Banti, Nikolaos Kourkoumelis, Constantinos G. Tsiafoulis, Christina Papachristodoulou, Angelos G. Kalampounias, Sotiris K. Hadjikakou, Conjugation of Penicillin-G with Silver(I) Ions Expands Its Antimicrobial Activity against Gram Negative Bacteria, Antibiotics, 9, 1, (2020), 25 https://doi.org/10.3390/antibiotics9010025
  17. Refdinal Nawfa, Adi Purnomo, Herdayanto Putro, Synthesis of Antibiotic Penicillin-G Enzymatically by Penicillium chrysogenum, Asian Journal of Chemistry, 31, 10, (2019), 2367-2369 https://doi.org/10.14233/ajchem.2019.21766
  18. Diana M. Harris, Zita A. van der Krogt, Paul Klaassen, Leonie M. Raamsdonk, Susanne Hage, Marco A. van den Berg, Roel A. L. Bovenberg, Jack T. Pronk, Jean-Marc Daran, Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production, BMC Genomics, 10, 1, (2009), 75 https://doi.org/10.1186/1471-2164-10-75
  19. J. Madhusudhanan, B. Bamarukmani, Optimization of phenyl acetic acid concentration during the growth phase of Penicillin-G production in pilot plant, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8, 3S, (2017), 291-301
  20. Marya Lieberman, HPLC Methodology Manual: Distributed Pharmaceutical Analysis Laboratory (DPAL), Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, 2018
  21. Dwiarso Rubiyanto, Metode Kromatografi: Prinsip Dasar, Praktikum dan Pendekatan Pembelajaran Kromatografi, Deepublish, Yogyakarta, 2017
  22. Yulistia Budianti Soemarie, Fitri Handayani, Edna Nur Annisa, Uji Aktivitas Antibakteri Ekstrak Etanol Daun Selutui Puka (Tabernaemontana macrocarpa Jack) terhadap Bakteri Staphylococcus aureus, Jurnal Ilmiah Ibnu Sina, 3, 2, (2018), 266-274
  23. Melzi Octaviani, Haiyul Fadhli, Erenda Yuneistya, Uji Aktivitas Antimikroba Ekstrak Etanol Kulit Bawang Merah (Allium cepa L.) dengan Metode Difusi Cakram, Pharmaceutical Sciences & Research, 6, 1, (2019), 62-68 https://doi.org/10.7454/psr.v6i1.4333
  24. Gabriel Hancu, Brigitta Simon, Hajnal Kelemen, Aura Rusu, Eleonora Mircia, Árpád Gyéresi, Thin layer chromatographic analysis of Beta-lactam antibiotics, Advanced pharmaceutical bulletin, 3, 2, (2013), 367-371 http://dx.doi.org/10.5681/apb.2013.059
  25. Tomoya Shintani, Food Industrial Production of Monosaccharides Using Microbial, Enzymatic, and Chemical Methods, Fermentation, 5, 2, (2019), 47 https://doi.org/10.3390/fermentation5020047
  26. Ana I. Coelho, Gerard T. Berry, M. Estela Rubio-Gozalbo, Galactose metabolism and health, Current Opinion in Clinical Nutrition & Metabolic Care, 18, 4, (2015), 422-427 https://doi.org/10.1097/MCO.0000000000000189
  27. Madina Kechkar, Walaa Sayed, Audrey Cabrol, Majda Aziza, T. Ahmed Zaid, Abdeltif Amrane, Hayet Djelal, Isolation and Identification of Yeast Strains From Sugarcane Molasses, Dates and Figs for Ethanol Production Under Conditions Simulating Algal Hydrolysate, Brazilian Journal of Chemical Engineering, 36, 1, (2019), 157-169 https://doi.org/10.1590/0104-6632.20190361s20180114
  28. Eris Septiana, Partomuan Simanjuntak, Effect of Different Culture Condition on Antioxidant Secondary Metabolites from Endophytic Fungi Isolated from Turmeric Root, Majalah Obat Tradisional (Traditional Medicine Journal), 22, 1, (2017), 31-36 https://doi.org/10.22146/tradmedj.24308
  29. Ivonne Gutierréz-Rojas, Geraldine Tibasosa-Rodríguez, Nubia Moreno-Sarmiento, María Ximena Rodríguez-Bocanegra, Dolly Montoya, Carbon and nitrogen sources differently influence Penicillium sp. HC1 conidiation in solid and liquid culture, African Journal of Microbiology Research, 9, 47, (2015), 2290-2299 https://doi.org/10.5897/AJMR2015.7779
  30. Manoshi Bhattacharya, A history of evolution of the terms of carbohydrates coining the term ‘glucogenic carbohydrates’ and prescribing in grams per day for better nutrition communication, Journal of Public Health and Nutrition, 1, 4, (2018), 93-100
  31. Jakub Fehér, Ivan Červeňanský, Lukáš Václavík, Jozef Markoš, Electrodialysis applied for phenylacetic acid separation from organic impurities: Increasing the recovery, Separation and Purification Technology, 235, (2020), 116222 https://doi.org/10.1016/j.seppur.2019.116222
  32. Terence S. Crofts, Bin Wang, Aaron Spivak, Tara A. Gianoulis, Kevin J. Forsberg, Molly K. Gibson, Lauren A. Johnsky, Stacey M. Broomall, C. Nicole Rosenzweig, Evan W. Skowronski, Henry S. Gibbons, Morten O. A. Sommer, Gautam Dantas, Shared strategies for β-lactam catabolism in the soil microbiome, Nature Chemical Biology, 14, 6, (2018), 556-564 https://doi.org/10.1038/s41589-018-0052-1
  33. Rutger D. Douma, Amit T. Deshmukh, Lodewijk P. de Jonge, Bouke W. de Jong, Reza M. Seifar, Joseph J. Heijnen, Walter M. van Gulik, Novel insights in transport mechanisms and kinetics of phenylacetic acid and penicillin-G in Penicillium chrysogenum, Biotechnology Progress, 28, 2, (2012), 337-348 https://doi.org/10.1002/btpr.1503
  34. Murray Moo-Young, Comprehensive Biotechnology, Elsevier Science, 2011
  35. Oleksandr Salo, Secondary Metabolism by Industrially Improved Penicillium chrysogenum Strains, University of Groningen, Gronigen, Netherland, 2016
  36. Mohammad-Saeid Jami, Juan-Francisco Martín, Carlos Barreiro, Rebeca Domínguez-Santos, María-Fernanda Vasco-Cárdenas, María Pascual, Carlos García-Estrada, Catabolism of phenylacetic acid in Penicillium rubens. Proteome-wide analysis in response to the benzylpenicillin side chain precursor, Journal of Proteomics, 187, (2018), 243-259 https://doi.org/10.1016/j.jprot.2018.08.006
  37. Amila Pramisandi, Rofiq Sunaryanto, Suyanto, Erwahyuni Endang Prabandari, Effect of Phenylacetic Acid Addition on Productivity of Penicillium chrysogenum in Penicillin G Production Using Pilot Scale Reactor, Proceeding of International Conference on Chemical and Material Engineering, Semarang, 2012
  38. Andreas Otto Wagner, Eva Maria Prem, Rudolf Markt, Rüdiger Kaufmann, Paul Illmer, Formation of phenylacetic acid and phenylpropionic acid under different overload conditions during mesophilic and thermophilic anaerobic digestion, Biotechnology for Biofuels, 12, 1, (2019), 26 https://doi.org/10.1186/s13068-019-1370-6
  39. Ghania Bourzama, Nadjet Ennaghra, Boudjma Soumati, Saliha Benoune, Nesrine Atriche, Effect of Zinc Metal at High Concentration on Secondary Metabolic Pathways in Penicillium chrysogenum Strain, Journal of Microbiology, Biotechnology and Food Sciences, 9, 2, (2019), 307-313 https://doi.org/10.15414/jmbfs.2019.9.2.307-313
  40. Wan Zuraida Wan Mohd Zain, Jamaluddin Kassim, Shaikh Abdul Karim, Antimicrobial activity of plant extracts against Bacillus subtilis, Staphylococcus aureus and Escherichia coli, e-Journal of Chemistry, 8, S1, (2011), S282-S284