Synthesis of the BEAC4ND4 Ionophore from p-t-Butylcalix[4]arene Carboxylic Acid

*Nasriadi Dali orcid scopus  -  Department of Chemistry, Halu Oleo University, Indonesia
Arniah Dali orcid  -  Department of Chemistry Education, Faculty of Teacher Training and Education, Halu Oleo University, Indonesia
Seniwati Dali  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Indonesia
Hilda Ayu Melvi Amalia  -  Study Program of Tadris Biology, Faculty of Tarbiyah and Teacher Training, Institut Agama Islam Negeri IAIN Kendari, Indonesia
Received: 27 May 2020; Revised: 9 Nov 2020; Accepted: 29 Dec 2020; Published: 31 Jan 2021.
Open Access Copyright 2020 Jurnal Kimia Sains dan Aplikasi
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract
The BEAC4ND4 ionophore has been successfully synthesized from p-t-butylcalix[4]arene carboxylic acid. The BEAC4ND4 ionophore was obtained in two steps of the synthesis reaction. The first step is the chlorination reaction of p-t-butylcalix[4]arene carboxylic acid with thionyl chloride in dry benzene solvent. The chlorination reaction product is p-t-butylcalix[4]arene acyl chloride in the form of the light brown viscous liquid with a yield of 78.25% and TLC (SiO2, CH3OH: CH2Cl2 = 1: 1 v/v, Rf = 0.65). The second step is the amidation reaction of ethyl 2-aminoacetate with p-t-butylcalix[4]arene acyl chloride in dry tetrahydrofuran solvent. The product of the amidation reaction is p-t-butylcalix[4]arene ethylesteramide or the BEAC4ND4 ionophore in the form of a white solid with the yield of 75.22%, a melting point of 314-316°C, and TLC (SiO2, CH3OH: CH2Cl2 = 1: 1 v/v, Rf = 0.75).
Keywords: BEAC4ND4 ionophore; chlorination; amidation; calix[4]arene; carboxylic acid
Funding: Halu Oleo University

Article Metrics:

  1. Françoise Arnaud-Neu, Geraldine Barrett, Denis Corry, Suzanne Cremin, George Ferguson, John F. Gallagher, Stephen J. Harris, M. Anthony McKervey, Marie‐Jose Schwing‐Weill, Cation complexation by chemically modified calixarenes. Part 10. Thioamide derivatives of p-tert-butylcalix[4]-, [5]- and [6]-arenes with selectivity for copper, silver, cadmium and lead. X-Ray molecular structures of calix[4]arene thioamide–lead(II) and calix[4]arene amide–copper(II) complexes, Journal of the Chemical Society, Perkin Transactions 2, 3, (1997), 575-580 https://doi.org/10.1039/A605417J
  2. Peter L. H. M. Cobben, Richard J. M. Egberink, Johan G. Bomer, Piet Bergveld, Willem Verboom, David N. Reinhoudt, Transduction of selective recognition of heavy metal ions by chemically modified field effect transistors (CHEMFETs), Journal of the American Chemical Society, 114, 26, (1992), 10573-10582 https://doi.org/10.1021/ja00052a063
  3. Nasriadi Dali, Abd. Wahid Wahab, Firdaus, Maming, Sintesis5,11,17,23,29,35-Heksa-p-tert-Butil-37,39,41-Tri(Etoksikarbonilmetoksi)-38,40,42-Trihidroksi-Kaliks[6]Arena dari p-tert-Butilkaliks[6]Arena, Jurnal Kimia & Pendidikan Kimia, 1, 2, (2012), 110-115
  4. Nasriadi Dali, Abd Wahid Wahab, Firdaus Firdaus, Maming Maming, Sintesis Heksa-p-tert-Butilheksaesterkaliks [6] Arena dari p-tert-Butilkaliks [6] Arena, Al-Kimia, 3, 1, (2015), 103-109
  5. Triana Kusumaningsih, Jumina Jumina, Dwi Siswanta, Mustofa Mustofa, Synthesis of Tetra-p-Propenyltetraestercalix 4]arene and Tetra-p-Propenyltetracarboxylicacidcalix[4]arene from p-t-Butylphenol, Indonesian Journal of Chemistry, 10, 1, (2010), 122-126 https://doi.org/10.22146/ijc.21491
  6. Vandna Arora, Har Mohindra Chawla, Suneel Pratap Singh, Calixarenes as sensor materials for recognition and separation of metal ions, Arkivoc, 2007, 2, (2007), 172-200 http://dx.doi.org/10.3998/ark.5550190.0008.205
  7. C David Gutsche, Calixarenes Revisited, Royal Society of Chemistry, London, 1983
  8. Nasriadi Dali, Arniah Dali, Synthesis of the BCAC4ND2 Ionophore from pt-Butylcalix [4] arene Ethylester, Akta Kimia Indonesia, 5, 1, (2020), 33-42 https://dx.doi.org/10.12962/j25493736.v5i1.6711
  9. Nasriadi Dali, Abd Wahid Wahab, Firdaus, Maming, Muhammad Nurdin, Synthesis of Hexa (p-tert-butyl) hexa (carboxylic acid) calix [6] arene from Hexa (p-tert-butyl) hexa (ethyl ester) calix [6] arene, International Journal of ChemTech Research, 9, (2016), 486-490
  10. Damien W. M. Arrigan, Gyula Svehla, Stephen J. Harris, M. Anthony McKervey, Use of calixarenes as modifiers of carbon paste electrodes for voltammetric analysis, Electroanalysis, 6, 2, (1994), 97-106 https://doi.org/10.1002/elan.1140060205
  11. William Kemp, Organic Spectroscopy, 3rd ed., Macmillan International Higher Education, 1991
  12. Joseph B. Lambert, Herbert F. Shurvell, David A. Lightner, Robert Graham Cooks, Organic Structural Spectroscopy, Prentice Hall, 1998
  13. Hardjono Sastrohamidjojo, Spektroskopi resonansi magnetik inti (nuclear magnetic resonance, NMR), Liberty, Yogyakarta, 1994
  14. Carlos Jaime, Javier De Mendoza, Pilar Prados, Pedro M. Nieto, Concha Sanchez, Carbon-13 NMR chemical shifts. A single rule to determine the conformation of calix[4]arenes, The Journal of Organic Chemistry, 56, 10, (1991), 3372-3376 https://doi.org/10.1021/jo00010a036
  15. Gaurav Arora, Calix [4] arenes with proton-ionizable groups on the lower and upper rim, Dissertation, Texas Tech University, Lubbock, Texas, 2006
  16. C. David Gutsche, Jeffrey A. Levine, P. K. Sujeeth, Calixarenes. 17. Functionalized calixarenes: the Claisen rearrangement route, The Journal of Organic Chemistry, 50, 26, (1985), 5802-5806 https://doi.org/10.1021/jo00350a072
  17. C. David Gutsche, Balram Dhawan, Kwang Hyun No, Ramamurthi Muthukrishnan, Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol, Journal of the American Chemical Society, 103, 13, (1981), 3782-3792 https://doi.org/10.1021/ja00403a028

Last update: 2021-03-04 00:03:51

No citation recorded.

Last update: 2021-03-04 00:03:52

No citation recorded.