skip to main content

Chitosan-CuO Nanoparticles as Antibacterial Shigella dysenteriae: Synthesis, Characterization, and In Vitro Study

1Pharmaceutical Chemistry, Bhakti Pertiwi High School of Pharmacy Science, Indonesia

2Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Indonesia

3Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Indonesia

Received: 5 Aug 2020; Revised: 11 Nov 2020; Accepted: 9 Jan 2021; Published: 31 Jan 2021.
Open Access Copyright 2020 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

The synthesis of chitosan- CuO nanoparticles was studied. This research’s aims were biosynthesis CuO nanoparticles, synthesis of chitosan-CuO nanoparticles, and used as an antibacterial agent of Shigella dysenteriae. CuO nanoparticles and chitosan-CuO nanoparticles were characterized by FTIR spectroscopy and X-ray diffraction, respectively. CuO nanoparticle was synthesized by the reaction between leaf extract of sweet star fruit (Averrhoa carambola L.) and copper sulfate pentahydrate. Chitosan-CuO nanoparticles were synthesized by a heating method. The suspension of chitosan-CuO nanoparticles was used as an antibacterial agent with a paper disk method. The result showed that the Cu-O group at CuO nanoparticles was detected at a wavenumber of 503, 619, 767, and 821 cm-1. The crystallite size of the CuO nanoparticles was 4.25 nm. Cu-O group bonded at N-H and O-H groups and detected at 3406 cm-1 from the FTIR spectra of chitosan-CuO nanoparticles. The average inhibition zone of chitosan-CuO nanoparticles at concentration 2.500, 5.000, 7.500, and 10.000 ppm to Shigella dysenteriae were 13.57 ± 1.55; 14.90 ± 1.20; 15.97 ± 0.76 and 17.03 ± 1.80 mm, respectively.

Fulltext View|Download
Keywords: Chitosan-CuO nanoparticles; characterization; Shigella dysenteriae
Funding: Sekolah Tinggi Ilmu Farmasi Bhakti Pertiwi

Article Metrics:

  1. Brajesh Kumar, Kumari Smita, Luis Cumbal, Alexis Debut, Yolanda Angulo, Biofabrication of copper oxide nanoparticles using Andean blackberry (Rubus glaucus Benth.) fruit and leaf, Journal of Saudi Chemical Society, 21, (2017), S475-S480 https://doi.org/10.1016/j.jscs.2015.01.009
  2. Y. T. Prabhu, K. Venkateswara Rao, V. Sesha Sai, Tambur Pavani, A facile biosynthesis of copper nanoparticles: A micro-structural and antibacterial activity investigation, Journal of Saudi Chemical Society, 21, 2, (2017), 180-185 https://doi.org/10.1016/j.jscs.2015.04.002
  3. Rania Dadi, Rabah Azouani, Mamadou Traore, Christine Mielcarek, Andrei Kanaev, Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram-negative strains, Materials Science and Engineering: C, 104, (2019), 109968 https://doi.org/10.1016/j.msec.2019.109968
  4. Kankanit Phiwdang, Sineenart Suphankij, Wanichaya Mekprasart, Wisanu Pecharapa, Synthesis of CuO Nanoparticles by Precipitation Method Using Different Precursors, Energy Procedia, 34, (2013), 740-745 https://doi.org/10.1016/j.egypro.2013.06.808
  5. Jyoti Mayekar, Vijay Dhar, S Radha, Synthesis of copper oxide nanoparticles using simple chemical route, International Journal of Scientific and Engineering Research, 5, (2014), 928-930
  6. Pulicherla Yugandhar, Thirumalanadhuni Vasavi, Palempalli Uma Maheswari Devi, Nataru Savithramma, Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity, Applied Nanoscience, 7, 7, (2017), 417-427 https://doi.org/10.1007/s13204-017-0584-9
  7. Melda Altikatoglu, Azade Attar, Fatih Erci, Corina Marilena Cristache, Ibrahim Isildak, Green synthesis of copper oxide nanoparticles using Ocimum basilicum extract and their antibacterial activity, Fresenius Environmental Bulletin, 25, 12, (2017), 7832-7837
  8. H. Raja Naika, K. Lingaraju, K. Manjunath, Danith Kumar, G. Nagaraju, D. Suresh, H. Nagabhushana, Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity, Journal of Taibah University for Science, 9, 1, (2015), 7-12 https://doi.org/10.1016/j.jtusci.2014.04.006
  9. V. Mohanasrinivasan, Mudit Mishra, Jeny Singh Paliwal, Suneet Kr Singh, E. Selvarajan, V. Suganthi, C. Subathra Devi, Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste, 3 Biotech, 4, 2, (2014), 167-175 https://doi.org/10.1007/s13205-013-0140-6
  10. Eric Guibal, Interactions of metal ions with chitosan-based sorbents: a review, Separation and Purification Technology, 38, 1, (2004), 43-74 https://doi.org/10.1016/j.seppur.2003.10.004
  11. Ahmad Fatoni, Ensiwi Munarsih, Kadek Asmadi, Nurlisa Hidayati, Synthesis and Characterization Chitosan-ZnO nanoparticle and Its Application as Antibacterial Agent of Staphylococus aureus ATCC 25923, Science and Technology Indonesia, 5, 1, (2020), 1-5 https://doi.org/10.26554/sti.2020.5.1.1-5
  12. Ahmad Fatoni, Hilma Hilma, Ade Arinia Rasyad, Selly Novriyanti, Nurlisa Hidayati, Biosintesis ZnO Nanopartikel dari Ekstrak Air Daun Jambu Biji (Psidium guajava L) dan Ion Zn2+ serta Interaksinya dengan Kitosan sebagai Antibakteri Escherichia coli, Jurnal Sains Farmasi & Klinis, 7, 2, (2020), 151-157 http://doi.org/10.25077/jsfk.7.2.151-157.2020
  13. S. Logpriya, V. Bhuvaneshwari, D. Vaidehi, R. P. SenthilKumar, R. S. Nithya Malar, B. Pavithra Sheetal, R. Amsaveni, M. Kalaiselvi, Preparation and characterization of ascorbic acid-mediated chitosan–copper oxide nanocomposite for anti-microbial, sporicidal and biofilm-inhibitory activity, Journal of Nanostructure in Chemistry, 8, 3, (2018), 301-309 https://doi.org/10.1007/s40097-018-0273-6
  14. Dipranjan Laha, Arindam Pramanik, Sourav Chattopadhyay, Sandip kumar Dash, Somenath Roy, Panchanan Pramanik, Parimal Karmakar, Folic acid modified copper oxide nanoparticles for targeted delivery in in vitro and in vivo systems, RSC Advances, 5, 83, (2015), 68169-68178 http://dx.doi.org/10.1039/C5RA08110F
  15. Sana Farhoudian, Mehdi Yadollahi, Hassan Namazi, Facile synthesis of antibacterial chitosan/CuO bio-nanocomposite hydrogel beads, International Journal of Biological Macromolecules, 82, (2016), 837-843 https://doi.org/10.1016/j.ijbiomac.2015.10.018
  16. Motahareh Amiri, Zahra Etemadifar, Alireza Daneshkazemi, Mehrnoosh Nateghi, Antimicrobial effect of copper oxide nanoparticles on some oral bacteria and candida species, Journal of Dental Biomaterials, 4, 1, (2017), 347-352
  17. Yuvaraj Haldorai, Jae-Jin Shim, Multifunctional Chitosan-Copper Oxide Hybrid Material: Photocatalytic and Antibacterial Activities, International Journal of Photoenergy, 2013, (2013), 245646 https://doi.org/10.1155/2013/245646
  18. Muhammad Sani Usman, Mohamed Ezzat El Zowalaty, Kamyar Shameli, Norhazlin Zainuddin, Mohamed Salama, Nor Azowa Ibrahim, Synthesis, characterization, and antimicrobial properties of copper nanoparticles, International Journal of Nanomedicine, 8, 1, (2013), 4467-4479 https://doi.org/10.2147/IJN.S50837
  19. Sohier M Syame, WS Mohamed, Rehab K Mahmoud, Shimaa T Omara, Synthesis of copper-chitosan nanocomposites and their applications in treatment of local pathogenic isolates bacteria, Oriental Journal of Chemistry, 33, 6, (2017), 2959-2969 http://dx.doi.org/10.13005/ojc/330632
  20. Chunyan Wang, Zhongwen Lü, Wei Yan, Shangjing Zeng, Runwei Wang, Ternary solid nano organic/inorganic composite of lanthanum with acetic acid and curcumin/hydroxyapatite and its antibacterial activity, Chemical Research in Chinese Universities, 30, 3, (2014), 352-355 https://doi.org/10.1007/s40242-014-3433-3
  21. Muhammad S. Usman, Nor A. Ibrahim, Kamyar Shameli, Norhazlin Zainuddin, Wan M. Yunus, Copper Nanoparticles Mediated by Chitosan: Synthesis and Characterization via Chemical Methods, Molecules, 17, 12, (2012), 14928-14936 https://doi.org/10.3390/molecules171214928
  22. M. S. Benhabiles, R. Salah, H. Lounici, N. Drouiche, M. F. A. Goosen, N. Mameri, Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste, Food Hydrocolloids, 29, 1, (2012), 48-56 https://doi.org/10.1016/j.foodhyd.2012.02.013
  23. Azharuddin Daphedar, Tarikere C. Taranath, Green synthesis of zinc nanoparticles using leaf extract of Albizia saman (Jacq.) Merr. and their effect on root meristems of Drimia indica (Roxb.) Jessop, Caryologia, 71, 2, (2018), 93-102 https://doi.org/10.1080/00087114.2018.1437980
  24. Mahmoud Nasrollahzadeh, Seyedeh Samaneh Momeni, S. Mohammad Sajadi, Green synthesis of copper nanoparticles using Plantago asiatica leaf extract and their application for the cyanation of aldehydes using K4Fe(CN)6, Journal of Colloid and Interface Science, 506, (2017), 471-477 https://doi.org/10.1016/j.jcis.2017.07.072
  25. Dimpal Mewara, Honey Tamakuwala, Binita Desai, Antifungal activity and phytochemical screening from leaf extract of Manilkara zapota and Averrhoa carambola, BMR Phytomedicine, 3, 1, (2017), 1-9
  26. S. Vijayakumar, S. Mahadevan, P. Arulmozhi, S. Sriram, P. K. Praseetha, Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis, Materials Science in Semiconductor Processing, 82, (2018), 39-45 https://doi.org/10.1016/j.mssp.2018.03.017
  27. Mina Sorbiun, Ebrahim Shayegan Mehr, Ali Ramazani, Asemeh Mashhadi Malekzadeh, Biosynthesis of metallic nanoparticles using plant extracts and evaluation of their antibacterial properties, Nanochemistry Research, 3, 1, (2018), 1-16 https://dx.doi.org/10.22036/ncr.2018.01.001
  28. Muhammad Imran Din, Aneela Rani, Recent Advances in the Synthesis and Stabilization of Nickel and Nickel Oxide Nanoparticles: A Green Adeptness, International Journal of Analytical Chemistry, 2016, (2016), 3512145 https://doi.org/10.1155/2016/3512145
  29. Li-Hua Li, Jian-Cheng Deng, Hui-Ren Deng, Zi-Ling Liu, Xiao-Li Li, Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films, Chemical Engineering Journal, 160, 1, (2010), 378-382 https://doi.org/10.1016/j.cej.2010.03.051
  30. S. Mekahlia, B. Bouzid, Chitosan-Copper (II) complex as antibacterial agent: synthesis, characterization and coordinating bond- activity correlation study, Physics Procedia, 2, 3, (2009), 1045-1053 https://doi.org/10.1016/j.phpro.2009.11.061
  31. R Manimekalai, C. Ramachandra Raja, EDTA effect on copper sulphate penta hydrate-A NLO material, International Research Journal of Pure and Applied Chemistry, (2013), 391-403 https://doi.org/10.9734/IRJPAC/2013/5299
  32. Suneeta Kumari, P. Rath, A. Sri Hari Kumar, T. N. Tiwari, Extraction and characterization of chitin and chitosan from fishery waste by chemical method, Environmental Technology & Innovation, 3, (2015), 77-85 https://doi.org/10.1016/j.eti.2015.01.002
  33. Ruihua Huang, Bingchao Yang, Qian Liu, Removal of chromium(VI) Ions from aqueous solutions with protonated crosslinked chitosan, Journal of Applied Polymer Science, 129, 2, (2013), 908-915 https://doi.org/10.1002/app.38685
  34. Nan Li, Renbi Bai, A Novel Amine-Shielded Surface Cross-Linking of Chitosan Hydrogel Beads for Enhanced Metal Adsorption Performance, Industrial & Engineering Chemistry Research, 44, 17, (2005), 6692-6700 https://doi.org/10.1021/ie050145k
  35. Nadia G. Kandile, Taha M. A. Razek, Ahmed M. Al-Sabagh, Maamoun M. T. Khattab, Synthesis and evaluation of some amine compounds having surface active properties as H2S scavenger, Egyptian Journal of Petroleum, 23, 3, (2014), 323-329 https://doi.org/10.1016/j.ejpe.2014.08.008
  36. Mojtaba Taran, Maryam Rad, Mehran Alavi, Antibacterial Activity of Copper Oxide (CuO) Nanoparticles Biosynthesized by Bacillus sp. FU4: Optimization of Experiment Design, Pharmaceutical Sciences, 23, 3, (2017), 198-206 https://doi.org/10.15171/PS.2017.30
  37. S Hemalatha, M Makeswari, Green synthesis, characterization and antibacterial studies of CuO nanoparticles from eichhornia crassipes, Rasayan Journal of Chemistry, 10, 3, (2017), 838-843 http://dx.doi.org/10.7324/RJC.2017.1031800
  38. D Berra, SE Laouini, B Benhaoua, MR Ouahrani, D Berrani, A Rahal, Green synthesis of copper oxide nanoparticles by pheonix dactylifera l leaves extract, Digest Journal of Nanomaterials and Biostructures, 13, 4, (2018), 1231-1238
  39. Nabeel A Bakr, Tariq A Al-Dhahir, Saja B Mohammad, Growth of copper sulfate pentahydrate single crystals by slow evaporation technique, Journal of Advance in Physics, 13, 2, (2017), 4651-4656
  40. Appu Manikandan, Muthukrishnan Sathiyabama, Green synthesis of copper-chitosan nanoparticles and study of its antibacterial activity, Journal of Nanomedicine & Nanotechnology, 6, 1, (2015), 1-5 http://doi.org/10.4172/2157-7439.1000251
  41. Ping Ding, Ke-Long Huang, Gui-Yin Li, Wen-Wen Zeng, Mechanisms and kinetics of chelating reaction between novel chitosan derivatives and Zn(II), Journal of Hazardous Materials, 146, 1, (2007), 58-64 https://doi.org/10.1016/j.jhazmat.2006.11.061
  42. Fernanda Stuani Pereira, Silvania Lanfredi, Eduardo René Pérez González, Deuber Lincon da Silva Agostini, Homero Marques Gomes, Ricardo dos Santos Medeiros, Thermal and morphological study of chitosan metal complexes, Journal of Thermal Analysis and Calorimetry, 129, 1, (2017), 291-301 https://doi.org/10.1007/s10973-017-6146-2
  43. R. P. Allaker, The Use of Nanoparticles to Control Oral Biofilm Formation, Journal of Dental Research, 89, 11, (2010), 1175-1186 https://doi.org/10.1177/0022034510377794
  44. Maja Radetić, Darka Marković, Nano-finishing of cellulose textile materials with copper and copper oxide nanoparticles, Cellulose, 26, 17, (2019), 8971-8991 https://doi.org/10.1007/s10570-019-02714-4s
  45. Sofiane Sedira, Ahmed Abdelhakim Ayachi, Sihem Lakehal, Merouane Fateh, Slimane Achour, Silver nanoparticles in combination with acetic acid and zinc oxide quantum dots for antibacterial activities improvement—A comparative study, Applied Surface Science, 311, (2014), 659-665 https://doi.org/10.1016/j.apsusc.2014.05.132

Last update:

No citation recorded.

Last update: 2024-11-20 07:52:28

No citation recorded.