skip to main content

Heat Properties of Polylactic Acid Biocomposites after Addition of Plasticizers and Oil Palm Frond Microfiber

1Research Center for Biomass and Bioproduct, National Research and Innovation Agency, Cibinong Bogor, 16911, Indonesia

2Research Center for Biomaterials, Indonesian Institute of Sciences, Indonesia

Received: 29 May 2020; Revised: 14 Jul 2020; Accepted: 28 Jul 2020; Available online: 20 Aug 2020; Published: 31 Aug 2020.
Open Access Copyright 2020 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Polylactic acid (PLA) is a biopolymer that can replace thermoplastic polymers such as polypropylene (PP) in various applications due to strength, young modulus, biocompatibility, biodegradability, good clarity, oil resistance, and oxygen barrier ability. However, PLA has some drawbacks, including brittle, high glass transition temperature (Tg), and low degradation and crystallization rates. Therefore, modification is needed with the addition of nucleating agents and plasticizers to overcome these limitations of PLA. This research aims to study the effect of plasticizers and microfibril cellulose of oil palm frond (OPF) on thermal stability and to review the crystallization kinetics of PLA biocomposites. Polyethylene glycol and triacetin were used as plasticizers. Thermal analysis was performed using Thermal Gravimetry analysis (TGA) and Differential Scanning Calorimetry (DSC). The crystallization kinetics study was analyzed using a modified Avrami model under non-isothermal conditions. PLAP4000 has better thermal stability than PLAP200 and PLAG with Tonset and Tmax values reaching 349.17°C and 374.68°C, respectively, which are close to pure PLA. All types of plasticizers influenced decreasing the Tg value in the range of 27–42%, whereas OPF microfiber addition contributes to a Tg reduction of 37-55 %. Crystallization kinetic study was informed for heterogeneous and simultaneous nucleation mechanisms with an n value range of about 2-3 for PLAP4000 and PLAOP4000. The crystallization rate was multiplied 4-9-fold for PLAOP200 and 2-3-fold for PLAOP4000.

Fulltext View|Download | HTML
Keywords: non-isothermal crystallization kinetics; polyethylene glycol; polylactic acid; oil palm frond microfiber; triacetin
Funding: Research Center for Biomaterials, Indonesian Institute of Sciences

Article Metrics:

  1. M. S. Huda, L. T. Drzal, M. Misra, A. K. Mohanty, 2006, Wood-Fiber-Reinforced Poly(Lactic Acid) Composites: Evaluation of the Physicomechanical and Morphological Properties, Journal of Applied Polymer Science, 102, 5, 4856-4869 https://doi.org/10.1002/app.24829
  2. Rahul M. Rasal, Amol V. Janorkar, Douglas E. Hirt, 2010, Poly(Lactic Acid) Modifications, Progress in Polymer Science, 35, 3, 338-356 https://doi.org/10.1016/j.progpolymsci.2009.12.003
  3. Maria Laura Di Lorenzo, 2005, Crystallization Behavior of Poly(L-Lactic Acid), European Polymer Journal, 41, 3, 569-575 https://doi.org/10.1016/j.eurpolymj.2004.10.020
  4. Sajjad Saeidlou, Michel A. Huneault, Hongbo Li, Chul B. Park, 2012, Poly(Lactic Acid) Crystallization, Progress in Polymer Science, 37, 12, 1657-1677 https://doi.org/10.1016/j.progpolymsci.2012.07.005
  5. Rafael A. Auras, Bruce Harte, Susan Selke, Ruben Hernandez, 2003, Mechanical, Physical, and Barrier Properties of Poly(Lactide) Films, Journal of Plastic Film & Sheeting, 19, 2, 123-135 https://doi.org/10.1177/8756087903039702
  6. O. Martin, L. Avérous, 2001, Poly(Lactic Acid): Plasticization and Properties of Biodegradable Multiphase Systems, Polymer, 42, 14, 6209-6219 https://doi.org/10.1016/S0032-3861(01)00086-6
  7. B. Eling, S. Gogolewski, A. J. Pennings, 1982, Biodegradable Materials of Poly(L-Lactic Acid): 1. Melt-Spun and Solution-Spun Fibres, Polymer, 23, 11, 1587-1593 https://doi.org/10.1016/0032-3861(82)90176-8
  8. R. Vasanthakumari, A. J. Pennings, 1983, Crystallization Kinetics of Poly(L-Lactic Acid), Polymer, 24, 2, 175-178 https://doi.org/10.1016/0032-3861(83)90129-5
  9. W. Hoogsteen, A. R. Postema, A. J. Pennings, Gerrit Ten Brinke, P. Zugenmaier, 1990, Crystal Structure, Conformation and Morphology of Solution-Spun Poly(L-Lactide) Fibers, Macromolecules, 23, 2, 634-642 https://doi.org/10.1021/ma00204a041
  10. L. T. Lim, R. Auras, M. Rubino, 2008, Processing Technologies for Poly(Lactic Acid), Progress in Polymer Science, 33, 8, 820-852 https://doi.org/10.1016/j.progpolymsci.2008.05.004
  11. Nurul Hani Md Zubir, Sung Ting Sam, Nik Noriman Zulkepli, Mohd Firdaus Omar, 2018, The Effect of Rice Straw Particulate Loading and Polyethylene Glycol as Plasticizer on the Properties of Polylactic Acid/Polyhydroxybutyrate-Valerate Blends, Polymer Bulletin, 75, 1, 61-76 https://doi.org/10.1007/s00289-017-2018-y
  12. Athanasia Amanda Septevani, Samsul Bhakri, 2017, Plasticization of Poly(Lactic Acid) Using Different Molecular Weight of Poly(Ethylene Glycol), AIP Conference Proceedings, 1904, 1, 020038 https://doi.org/10.1063/1.5011895
  13. Bettina Dittrich, Karen-Alessa Wartig, Daniel Hofmann, Rolf Mülhaupt, Bernhard Schartel, 2015, The Influence of Layered, Spherical, and Tubular Carbon Nanomaterials' Concentration on the Flame Retardancy of Polypropylene, Polymer Composites, 36, 7, 1230-1241 https://doi.org/10.1002/pc.23027
  14. Kyung-man Choi, Myeon-Cheon Choi, Dong-Hun Han, Tae-Sung Park, Chang-Sik Ha, 2013, Plasticization of Poly(Lactic Acid) (PLA) through Chemical Grafting of Poly(Ethylene Glycol) (PEG) Via in Situ Reactive Blending, European Polymer Journal, 49, 8, 2356-2364 https://doi.org/10.1016/j.eurpolymj.2013.05.027
  15. Isabelle Pillin, Nicolas Montrelay, Yves Grohens, 2006, Thermo-Mechanical Characterization of Plasticized PLA: Is the Miscibility the Only Significant Factor?, Polymer, 47, 13, 4676-4682 https://doi.org/10.1016/j.polymer.2006.04.013
  16. Justine Muller, Alberto Jiménez, Chelo González-Martínez, Amparo Chiralt, 2016, Influence of Plasticizers on Thermal Properties and Crystallization Behaviour of Poly(Lactic Acid) Films Obtained by Compression Moulding, Polymer International, 65, 8, 970-978 https://doi.org/10.1002/pi.5142
  17. Buong Woei Chieng, Nor Azowa Ibrahim, Wan Md Zin Wan Yunus, Mohd Zobir Hussein, 2013, Plasticized Poly(Lactic Acid) with Low Molecular Weight Poly(Ethylene Glycol): Mechanical, Thermal, and Morphology Properties, Journal of Applied Polymer Science, 130, 6, 4576-4580 https://doi.org/10.1002/app.39742
  18. Homero Salas-Papayanopolos, Ana B. Morales-Cepeda, Saúl Sanchez, Pierre G. Lafleur, I. Gomez, 2017, Synergistic Effect of Silver Nanoparticle Content on the Optical and Thermo-Mechanical Properties of Poly(L-Lactic Acid)/Glycerol Triacetate Blends, Polymer Bulletin, 74, 12, 4799-4814 https://doi.org/10.1007/s00289-017-1992-4
  19. Xin-Feng Wei, Rui-Ying Bao, Zhi-Qiang Cao, Liang-Qing Zhang, Zheng-Ying Liu, Wei Yang, Bang-Hu Xie, Ming-Bo Yang, 2014, Greatly Accelerated Crystallization of Poly(Lactic Acid): Cooperative Effect of Stereocomplex Crystallites and Polyethylene Glycol, Colloid and Polymer Science, 292, 1, 163-172 https://doi.org/10.1007/s00396-013-3067-x
  20. Xuetao Shi, Guangcheng Zhang, Thanh V. Phuong, Andrea Lazzeri, 2015, Synergistic Effects of Nucleating Agents and Plasticizers on the Crystallization Behavior of Poly(Lactic Acid), Molecules, 20, 1, 1579-1593 https://doi.org/10.3390/molecules20011579
  21. Ali Abdulkhani, Jaber Hosseinzadeh, Saeed Dadashi, Mohammad Mousavi, 2015, A Study of Morphological, Thermal, Mechanical and Barrier Properties of PLA Based Biocomposites Prepared with Micro and Nano Sized Cellulosic Fibers, Cellulose Chemistry and Technology, 49, 7-8, 597-605
  22. Yong-Qing Zhao, Hoi-Yan Cheung, Kin-Tak Lau, Cai-Ling Xu, Dan-Dan Zhao, Hu-Lin Li, 2010, Silkworm Silk/Poly(Lactic Acid) Biocomposites: Dynamic Mechanical, Thermal and Biodegradable Properties, Polymer Degradation and Stability, 95, 10, 1978-1987 https://doi.org/10.1016/j.polymdegradstab.2010.07.015
  23. Nicolas Le Moigne, Marc Longerey, Jean-Marie Taulemesse, Jean-Charles Bénézet, Anne Bergeret, 2014, Study of the Interface in Natural Fibres Reinforced Poly(Lactic Acid) Biocomposites Modified by Optimized Organosilane Treatments, Industrial Crops and Products, 52, 481-494 https://doi.org/10.1016/j.indcrop.2013.11.022
  24. Lisman Suryanegara, Antonio Norio Nakagaito, Hiroyuki Yano, 2010, Thermo-Mechanical Properties of Microfibrillated Cellulose-Reinforced Partially Crystallized PLA Composites, Cellulose, 17, 4, 771-778 https://doi.org/10.1007/s10570-010-9419-5
  25. M. K. Mohamad Haafiz, Azman Hassan, Zainoha Zakaria, I. M. Inuwa, M. S. Islam, M. Jawaid, 2013, Properties of Polylactic Acid Composites Reinforced with Oil Palm Biomass Microcrystalline Cellulose, Carbohydrate Polymers, 98, 1, 139-145 https://doi.org/10.1016/j.carbpol.2013.05.069
  26. E. W. Fischer, Hans J. Sterzel, G. Wegner, 1973, Investigation of the Structure of Solution Grown Crystals of Lactide Copolymers by Means of Chemical Reactions, Kolloid-Zeitschrift und Zeitschrift für Polymere, 251, 11, 980-990 https://doi.org/10.1007/BF01498927
  27. Melvin Avrami, 1940, Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei, The Journal of Chemical Physics, 8, 2, 212-224 https://doi.org/10.1063/1.1750631
  28. Melvin Avrami, 1939, Kinetics of Phase Change. I General Theory, The Journal of Chemical Physics, 7, 12, 1103-1112 https://doi.org/10.1063/1.1750380
  29. Mehmet Kodal, Humeyra Sirin, Guralp Ozkoc, 2017, Non-Isothermal Crystallization Kinetics of PEG Plasticized PLA/G-POSS Nanocomposites, Polymer Composites, 38, 7, 1378-1389 https://doi.org/10.1002/pc.23704
  30. T. Zimmermann, E. Pöhler, T. Geiger, 2004, Cellulose Fibrils for Polymer Reinforcement, Advanced Engineering Materials, 6, 9, 754-761 https://doi.org/10.1002/adem.200400097
  31. V. S. Giita Silverajah, Nor Azowa Ibrahim, Norhazlin Zainuddin, Wan Md Zin Wan Yunus, Hazimah Abu Hassan, 2012, Mechanical, Thermal and Morphological Properties of Poly(lactic acid)/Epoxidized Palm Olein Blend, Molecules, 17, 10, 11729-11747 https://doi.org/10.3390/molecules171011729
  32. L. Quiles-Carrillo, S. Duart, N. Montanes, S. Torres-Giner, R. Balart, 2018, Enhancement of the Mechanical and Thermal Properties of Injection-Molded Polylactide Parts by the Addition of Acrylated Epoxidized Soybean Oil, Materials & Design, 140, 54-63 https://doi.org/10.1016/j.matdes.2017.11.031
  33. Paola Giudicianni, Giuseppe Cardone, Raffaele Ragucci, 2013, Cellulose, Hemicellulose and Lignin Slow Steam Pyrolysis: Thermal Decomposition of Biomass Components Mixtures, Journal of Analytical and Applied Pyrolysis, 100, 213-222 https://doi.org/10.1016/j.jaap.2012.12.026
  34. Sarifah Fauziah Syed Draman, Rusli Daik, Famiza Abdul Latif, Said M. El-Sheikh, 2014, Characterization and Thermal Decomposition Kinetics of Kapok (Ceiba pentandra L.)–Based Cellulose, BioResources, 9, 1, 8-23
  35. Fatemeh Safdari, Pierre J. Carreau, Marie C. Heuzey, Musa R. Kamal, 2017, Effects of Poly(Ethylene Glycol) on the Morphology and Properties of Biocomposites Based on Polylactide and Cellulose Nanofibers, Cellulose, 24, 7, 2877-2893 https://doi.org/10.1007/s10570-017-1327-5
  36. WeiDan Ding, Raymond K. M. Chu, Lun Howe Mark, Chul B. Park, Mohini Sain, 2015, Non-Isothermal Crystallization Behaviors of Poly(Lactic Acid)/Cellulose Nanofiber Composites in the Presence of CO2, European Polymer Journal, 71, 231-247 https://doi.org/10.1016/j.eurpolymj.2015.07.054
  37. S. Iannace, L. Nicolais, 1997, Isothermal Crystallization and Chain Mobility of Poly(L-Lactide), Journal of Applied Polymer Science, 64, 5, 911-919 https://doi.org/10.1002/(SICI)1097-4628(19970502)64:5<911::AID-APP11>3.0.CO;2-W
  38. Yong He, Zhongyong Fan, Yanfei Hu, Tong Wu, Jia Wei, Suming Li, 2007, DSC Analysis of Isothermal Melt-Crystallization, Glass Transition and Melting Behavior of Poly(L-Lactide) with Different Molecular Weights, European Polymer Journal, 43, 10, 4431-4439 https://doi.org/10.1016/j.eurpolymj.2007.07.007
  39. Yonghui Li, Caihong Chen, Jun Li, Xiuzhi Susan Sun, 2012, Isothermal Crystallization and Melting Behaviors of Bionanocomposites from Poly(Lactic Acid) and TiO2 Nanowires, Journal of Applied Polymer Science, 124, 4, 2968-2977 https://doi.org/10.1002/app.35326

Last update:

  1. Utilization of Spent Coffee Grounds as a Sustainable Resource for the Synthesis of Bioplastic Composites with Polylactic Acid, Starch, and Sucrose

    Sri Yustikasari Masssijaya, Muhammad Adly Rahandi Lubis, Rossy Choerun Nissa, Yeyen Nurhamiyah, Pramono Nugroho, Petar Antov, Seng-Hua Lee, Antonios N. Papadopoulos, Sukma Surya Kusumah, Lina Karlinasari. Journal of Composites Science, 7 (12), 2023. doi: 10.3390/jcs7120512
  2. Thermal Properties’ Enhancement of PLA-Starch-Based Polymer Composite Using Sucrose

    Sri Yustikasari Massijaya, Muhammad Adly Rahandi Lubis, Rossy Choerun Nissa, Yeyen Nurhamiyah, Wida Banar Kusumaningrum, Resti Marlina, Riska Surya Ningrum, Jajang Sutiawan, Iman Hidayat, Sukma Surya Kusumah, Lina Karlinasari, Rudi Hartono. Polymers, 16 (8), 2024. doi: 10.3390/polym16081028
  3. Reactive blending of polylactic acid/polyethylene glycol toward biodegradable film

    Ali Salimi, Shervin Ahmadi, Mona Faramarzi, Jalal Faghihi. Macromolecular Research, 31 (9), 2023. doi: 10.1007/s13233-023-00174-1

Last update: 2024-12-25 11:15:30

No citation recorded.