skip to main content

The Coated-Wire Ion-Selective Electrode (CWISE) of Tartrazine Using Chitosan as an Ionophore

1Department of Chemistry, Faculty of Mathematics and Natural Science, Lambung Mangkurat University, Banjarbaru, Indonesia

2Laboratory of Instrumentation Chemistry, Faculty of Mathematics and Natural Science, Lambung Mangkurat University, Banjarbaru, Indonesia

Received: 20 Apr 2021; Revised: 16 Jul 2021; Accepted: 25 Aug 2021; Published: 31 Aug 2021.
Open Access Copyright 2021 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Research on the Ion-Selective Electrode (ISE) of coated wire-type tartrazine using chitosan as an ionophore has been developed. The variables used in the manufacture of ISE are membrane composition and immersion time. Meanwhile, the basic characteristics of ISE measured are Nernst value, measurement concentration range, detection limit, and measurement response time. The results showed that ISE tartrazine coated wire type had an optimum membrane composition in a mixture of chitosan: PVC: DOP of 3: 34: 63 (% w/w) and a membrane immersion time 20 minutes. The basic characteristics of ISE produce a Nernst value of 20.976 mV/decade. The measurement concentration range is 1×10-7-1×10-2 M with a detection limit of 2.749×10-7 M or 0.1469 ppm. The response time ranges from 10-60 seconds, with an average of 40 seconds.

Fulltext View|Download
Keywords: ion-selective electrode (ISE); tartrazine; chitosan; Nernst value
Funding: Universitas Lambung Mangkurat

Article Metrics:

Article Info
Section: Research Articles
Language : EN
Statistics:
  1. Ghasem Karim-Nezhad, Zeynab Khorablou, Maryam Zamani, Parisa Seyed Dorraji, Mahdieh Alamgholiloo, Voltammetric sensor for tartrazine determination in soft drinks using poly (p-aminobenzenesulfonic acid)/zinc oxide nanoparticles in carbon paste electrode, Journal of Food and Drug Analysis, 25, 2, (2017), 293-301 https://doi.org/10.1016/j.jfda.2016.10.002
  2. Pnina Ashkenazi, Chaim Yarnitzky, Michael Cais, Determination of synthetic food colours by means of a novel sample preparation system, Analytica Chimica Acta, 248, 1, (1991), 289-299 https://doi.org/10.1016/S0003-2670(00)80898-3
  3. M. Luísa S. Silva, M. Beatriz Q. Garcia, José L. F. C. Lima, E. Barrado, Voltammetric determination of food colorants using a polyallylamine modified tubular electrode in a multicommutated flow system, Talanta, 72, 1, (2007), 282-288 https://doi.org/10.1016/j.talanta.2006.10.032
  4. Kobun Rovina, Shafiquzzaman Siddiquee, Sharifudin Md Shaarani, Selective Electrochemical Sensor for the Determination of Tartrazine in Food Products, Transactions on Science and Technology, 6, 1-2, (2019), 54-59
  5. Selen Tahtaisleyen, Ozge Gorduk, Yucel Sahin, Electrochemical Determination of Tartrazine Using a Graphene/Poly(L-Phenylalanine) Modified Pencil Graphite Electrode, Analytical Letters, 53, 11, (2020), 1683-1703 https://doi.org/10.1080/00032719.2020.1716242
  6. R.W. Sabnis, Handbook of Biological Dyes and Stains: Synthesis and Industrial Applications, Wiley, 2010
  7. Meiling Wang, Jianwei Zhao, Facile synthesis of Au supported on ionic liquid functionalized reduced graphene oxide for simultaneous determination of Sunset yellow and Tartrazine in drinks, Sensors and Actuators B: Chemical, 216, (2015), 578-585 https://doi.org/10.1016/j.snb.2015.04.053
  8. Afshin Rajabi Khorrami, Tahereh Hashempur, Ali Mahmoudi, Ali Reza Karimi, Determination of ultra-trace amounts of cobalt and nickel in water samples by inductively coupled plasma-optical emission spectrometry after preconcentration on modified C18-silica extraction disks, Microchemical Journal, 84, 1, (2006), 75-79 https://doi.org/10.1016/j.microc.2006.04.008
  9. Mir Reza Majidi, Mohammad Hossein Pournaghi-Azar, Reza Fadakar Bajeh Baj, Abdolhossein Naseri, Formation of graphene nanoplatelet-like structures on carbon–ceramic electrode surface: application for simultaneous determination of sunset yellow and tartrazine in some food samples, Ionics, 21, 3, (2015), 863-875 https://doi.org/10.1007/s11581-014-1223-z
  10. Laura J Stevens, Thomas Kuczek, John R Burgess, Mateusz A Stochelski, L Eugene Arnold, Leo Galland, Mechanisms of behavioral, atopic, and other reactions to artificial food colors in children, Nutrition Reviews, 71, 5, (2013), 268-281 https://doi.org/10.1111/nure.12023
  11. Ming Ma, Xubiao Luo, Bo Chen, Shengpei Su, Shouzhuo Yao, Simultaneous determination of water-soluble and fat-soluble synthetic colorants in foodstuff by high-performance liquid chromatography–diode array detection–electrospray mass spectrometry, Journal of Chromatography A, 1103, 1, (2006), 170-176 https://doi.org/10.1016/j.chroma.2005.11.061
  12. J. J. Berzas, J. Rodriguez Flores, M. J. Villaseñor Llerena, N. Rodriguez Fariñas, Spectrophotometric resolution of ternary mixtures of Tartrazine, Patent Blue V and Indigo Carmine in commercial products, Analytica Chimica Acta, 391, 3, (1999), 353-364 https://doi.org/10.1016/S0003-2670(99)00215-9
  13. T. M. Coelho, E. C. Vidotti, M. C. Rollemberg, A. N. Medina, M. L. Baesso, N. Cella, A. C. Bento, Photoacoustic spectroscopy as a tool for determination of food dyes: Comparison with first derivative spectrophotometry, Talanta, 81, 1, (2010), 202-207 https://doi.org/10.1016/j.talanta.2009.11.058
  14. Swapnil Tiwari, Manas Kanti Deb, Modified silver nanoparticles-enhanced single drop microextraction of tartrazine in food samples coupled with diffuse reflectance Fourier transform infrared spectroscopic analysis, Analytical Methods, 11, 28, (2019), 3552-3562 http://dx.doi.org/10.1039/C9AY00713J
  15. A. A. Dudkina, T. N. Volgina, N. V. Saranchina, N. A. Gavrilenko, M. A. Gavrilenko, Colorimetric determination of food colourants using solid phase extraction into polymethacrylate matrix, Talanta, 202, (2019), 186-189 https://doi.org/10.1016/j.talanta.2019.04.055
  16. Hua Xu, Xiupei Yang, Gu Li, Chuan Zhao, Xiangjun Liao, Green Synthesis of Fluorescent Carbon Dots for Selective Detection of Tartrazine in Food Samples, Journal of Agricultural and Food Chemistry, 63, 30, (2015), 6707-6714 https://doi.org/10.1021/acs.jafc.5b02319
  17. Missael Antonio Arroyo Negrete, Kazimierz Wrobel, Eunice Yanez Barrientos, Alma Rosa Corrales Escobosa, Francisco Javier Acevedo Aguilar, Katarzyna Wrobel, Determination of sulfonated azo dyes in chili powders by MALDI-TOF MS, Analytical and Bioanalytical Chemistry, 411, 22, (2019), 5833-5843 https://doi.org/10.1007/s00216-019-01965-1
  18. Agustina V. Schenone, María J. Culzoni, Nilda R. Marsili, Héctor C. Goicoechea, Determination of tartrazine in beverage samples by stopped-flow analysis and three-way multivariate calibration of non-linear kinetic-spectrophotometric data, Food Chemistry, 138, 2, (2013), 1928-1935 https://doi.org/10.1016/j.foodchem.2012.11.126
  19. Hazem M. Abu Shawish, Nasser Abu Ghalwa, Salman M. Saadeh, Heba El Harazeen, Development of novel potentiometric sensors for determination of tartrazine dye concentration in foodstuff products, Food Chemistry, 138, 1, (2013), 126-132 https://doi.org/10.1016/j.foodchem.2012.10.048
  20. Sakda Jampasa, Weena Siangproh, Kiattisak Duangmal, Orawon Chailapakul, Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages, Talanta, 160, (2016), 113-124 https://doi.org/10.1016/j.talanta.2016.07.011
  21. Alexander Chebotarev, Anastasiya Koicheva, Kateryna Bevziuk, Konstantin Pliuta, Denys Snigur, Simultaneous determination of Sunset Yellow and Tartrazine in soft drinks on carbon-paste electrode modified by silica impregnated with cetylpyridinium chloride, Journal of Food Measurement and Characterization, 13, 3, (2019), 1964-1972 https://doi.org/10.1007/s11694-019-00115-6
  22. Lukasz Tymecki, Stanisław Glab, Robert Koncki, Miniaturized, Planar Ion-selective Electrodes Fabricated by Means of Thick-film Technology, Sensors, 6, 4, (2006), https://doi.org/10.3390/s6040390
  23. Ali Düzgün, Gustavo A. Zelada-Guillén, Gastón A. Crespo, Santiago Macho, Jordi Riu, F. Xavier Rius, Nanostructured materials in potentiometry, Analytical and Bioanalytical Chemistry, 399, 1, (2011), 171-181 https://doi.org/10.1007/s00216-010-3974-3
  24. Mihaela D. Tutulea-Anastasiu, Deivy Wilson, Manel Del Valle, Cristina M. Schreiner, Igor Cretescu, A Solid-Contact Ion Selective Electrode for Copper(II) Using a Succinimide Derivative as Ionophore, Sensors, 13, 4, (2013), https://doi.org/10.3390/s130404367
  25. Eric Guibal, Interactions of metal ions with chitosan-based sorbents: a review, Separation and Purification Technology, 38, 1, (2004), 43-74 https://doi.org/10.1016/j.seppur.2003.10.004
  26. Alif Faiza Rahmawati, Qonitah Fardiyah, Pembuatan dan Karakterisasi Sensor Potensiometri Rhodamin B Berbasis Kitosan dengan Plastisizer Dioktil Sebakat (DOS), Jurnal Ilmu Kimia Universitas Brawijaya, 1, 1, (2013), 78-84
  27. Syafira Ayu Deviana, Qonitah Fardiyah, Pembuatan dan Karakterisasi Elektroda Selektif Ion Sulfat Tipe Kawat Terlapis Berbasis Piropilit, Jurnal Ilmu Kimia Universitas Brawijaya, 1, 1, (2013), 22-28

Last update:

No citation recorded.

Last update:

No citation recorded.